K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\sqrt{x-3-2\sqrt{x-3}+3}\)

\(=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}>=\sqrt{2}\)

Dấu = xảy ra khi x-3=1

=>x=4

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

Biến đổi biểu thức kết hợp với áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(\text{VT}=\sqrt{x^2+2y^2-6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}\)

\(=\sqrt{(x^2-6x+9)+2(y^2+2y+1)}+\sqrt{(x^2+2x+1)+3(y^2+2y+1)}\)

\(=\sqrt{(x-3)^2+2(y+1)^2}+\sqrt{(x+1)^2+3(y+1)^2}\)

\(\geq \sqrt{(x-3)^2}+\sqrt{(x+1)^2}=|x-3|+|x+1|=|3-x|+|x+1|\)

\(\geq |3-x+x+1|=4\)

Dấu "=" xảy ra khi :

\(\left\{\begin{matrix} (y+1)^2=0\\ (3-x)(x+1)\geq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} y=-1\\ -1\leq x\leq 3\end{matrix}\right.\)

30 tháng 8 2017

Cần chứng minh bđt : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2=\left(\left|a+b\right|\right)^2\)

\(\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+b^2+2ab\)

\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng)

Từ đó áp dụng ta được :

\(A\ge\sqrt{\left(x^2-6x+2y^2+4y+11\right)+\left(x^2+2x+3y^2+6y+4\right)}\)

\(\Leftrightarrow A\ge\sqrt{2x^2-4x+5y^2+10y+15}\)

\(\Leftrightarrow A\ge\sqrt{\left(2x^2-4x+2\right)+\left(5y^2+10y+5\right)+8}\)

\(\Leftrightarrow A\ge\sqrt{2\left(x-1\right)^2+5\left(y+1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\) có gtnn là \(2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\)

11 tháng 12 2017

nhanh thế

17 tháng 1 2016

\(A=\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)

\(=\sqrt{\left(x^2-6x+9\right)+2\left(y^2+2y+1\right)}+\sqrt{\left(x^2+2x+1\right)+3\left(y^2+2y+1\right)}\)

\(=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

\(\ge\sqrt{\left(x-3\right)^2+0}+\sqrt{\left(x+1\right)^2+0}\)

\(=\left|3-x\right|+\left|x+1\right|\)

\(\ge\left|3-x+x+1\right|\)

\(=4\)

Dấu bằng xảy ra khi và chỉ khi : 

\(\left(y+1\right)^2=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

\(\left(x-3\right)\left(x+1\right)\ge0\Leftrightarrow x^2-2x-3\ge0\Leftrightarrow\left(x-1\right)^2\ge4\Leftrightarrow\left|x-1\right|\ge2\Leftrightarrow x\ge3;x\le-1\)

Vậy GTNN của biểu thức là 4 khi  \(x\ge3\) hoặc \(x\le-1\) và \(y=-1\)

 

 

17 tháng 1 2016

Bạn dùng min copski
 

8 tháng 7 2019

\(A=\sqrt{2x^2-4x+3}+3\)

Ta có: \(2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)

\(=2[\left(x-1\right)^2+\frac{1}{2}]\)

\(=2\left(x-1\right)^2+1\ge1\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)

\(\Rightarrow MinA=4\Leftrightarrow x=1\)

26 tháng 8 2018

\(B=\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

A/dụng bđt Mincốpxki có:

\(B=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\ge\sqrt{\left(3-x+x+1\right)^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}=\sqrt{4^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\ge\sqrt{4^2}=4\)

Dấu ''='' xảy ra khi \(\left[{}\begin{matrix}x=3;y=-1\\x=1;y=-1\end{matrix}\right.\)

Vậy MinB = 4 <=> (x;y) = (3;-1); (1;-1)