Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x^2-4x+1}{x^2}=\dfrac{1}{x^2}-\dfrac{4}{x}+1=\left(\dfrac{1}{x^2}-\dfrac{4}{x}+4\right)-3=\left(\dfrac{1}{x}-2\right)^2-3\ge-3\)
\(A_{min}=-3\) khi \(x=\dfrac{1}{2}\)
2) \(A=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\)
\(maxA=19\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
a:=>x^2-1-x=2x-1
=>x^2-x-1=2x-1
=>x^2-3x=0
=>x=0(loại) hoặc x=3(nhận)
b:=>x+2=0 hoặc 5-3x=0
=>x=-2 hoặc x=5/3
c:=>20(1-2x)+6x=9(x-5)-24
=>20-40x+6x=9x-45-24
=>-34x+20=9x-69
=>-43x=-89
=>x=89/43
d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3
=>2x^2+4x-19=-2x+7
=>2x^2+6x-26=0
=>x^2+3x-13=0
=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)
e: =>(2x-3)(2x-3-x-1)=0
=>(2x-3)(x-4)=0
=>x=4 hoặc x=3/2
a) Phân thức M xác định khi và chỉ khi :
+) \(2x-2\ne0\Leftrightarrow x\ne1\)
+) \(2x+2\ne0\Leftrightarrow x\ne-1\)
+) \(1-\frac{x-3}{x+1}\ne0\)
\(\Leftrightarrow x-3\ne x+1\)
\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)
Vậy \(x\ne\left\{1;-1\right\}\)
b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)
\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)
\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)
\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)
\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)
\(M=\frac{1}{x-1}\)
\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)
Huỳnh Thoại m ghi thế bố t cx chả hỉu k it lm ns luôn đi lại còn bày đặt giỏi đã ngu còn tỏ ra ngu hơn
A = \(\frac{5}{-x^2-2x-3}=\frac{5}{-\left(x+1\right)^2-2}\)
Do: \(-\left(x+1\right)^2-2\le-2\)=> \(\frac{5}{-\left(x+1\right)^2-2}\ge-\frac{5}{2}\)
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinA = -5/2 <=> x = -1
Bài làm
Ta có : -x2 - 2x - 3
= -x2 - 2x - 1 - 2
= -( x2 + 2x + 1 ) - 2
= -( x - 1 )2 - 2 ≤ -2 ∀ x
=> \(\frac{1}{-\left(x-1\right)^2-2}\ge-\frac{1}{2}\)
=> \(\frac{5}{-\left(x-1\right)^2-2}\ge-\frac{5}{2}\)
hay A ≥ -5/2
Đẳng thức xảy ra khi x = 1
=> MinA = -5/2 <=> x = 1