nếu y = x . k với điều kiện :
y = 5 . 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để d1//d2 thì k+3=2-k
=>2k=-1
=>k=-1/2
b: Để d1 cắt d2 thì k+3<>2-k
=>k<>-1/2
c: để d1 trùg d2 thì k+3=2-k và -2=1(loại)
d: Để d1 đồng biến thì k+3>0
=>k>-3
e: Để d2 đồng biến thì 2-k>0
=>k<2
Hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau khi và chỉ khi k = 5 – k và m – 2 = 4 – m
Ta có: k = 5 – k ⇔ 2k = 5 ⇔ k = 2,5
m – 2 = 4 – m ⇔ 2m = 6 ⇔ m = 3
Vậy với k = 2,5 và m = 3 thì hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau.
a: Để hai đường thẳng y=(a-1)x+5 và y=(3-a)x+2 song song với nhau thì \(\left\{{}\begin{matrix}a-1=3-a\\5\ne2\left(đúng\right)\end{matrix}\right.\)
=>a-1=3-a
=>2a=4
=>a=2
b: Để hai đường thẳng y=kx+(m-2) và y=(5-k)x+4-m trùng nhau thì \(\left\{{}\begin{matrix}k=5-k\\m-2=4-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2k=5\\2m=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{5}{2}\\m=3\end{matrix}\right.\)
a: Để hai đường trùng nhau thì k-2=6-2k và -2m+5=m-1
=>3k=8 và -3m=-6
=>k=8/3 và m=2
b: Để hai đường song song thì k-2=6-2k và -2m+5<>m-1
=>k=8/3 và m<>2
c: Để hai đường cắt nhau thì k-2<>6-2k
=>k<>8/3
d: Để hai đường cắt nhau trên trục tung thì k-2<>6-2k và -2m+5=m-1
=>m=2 và k<>8/3
e: m=3
=>(d1): y=(k-2)x+2 và (d2): y=(6-2k)x-1
Để hai đường cắt nhau trên trục hoành thì k-2<>6-2k và -2/k-2=1/6-2k
=>k<>8/3 và -12+4k=k-2
=>3k=10 và k<>8/3
=>k=10/3
\(a,\Leftrightarrow\left\{{}\begin{matrix}2-m>0\\m-4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m>4\end{matrix}\right.\Leftrightarrow m\in\varnothing\\ b,\Leftrightarrow2-m=m-4\Leftrightarrow m=3\\ c,\Leftrightarrow2-m\ne m-4\Leftrightarrow m\ne3\)
a) Trùng nhau :\(\Leftrightarrow\hept{\begin{cases}k-2=6-2k\\m-1=5-2m\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}k=\frac{8}{3}\\m=2\end{cases}}\)
b) Song song \(\Leftrightarrow\hept{\begin{cases}k-2=6-2k\\m-1\ne5-2m\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}k=\frac{8}{3}\\m\ne2\end{cases}}\)
c) Cắt nhau\(\Leftrightarrow k-2\ne6-2k\)\(\Leftrightarrow k\ne\frac{8}{3}\)
d) Vuông góc với nhau \(\Leftrightarrow\left(k-2\right).\left(6-2k\right)=-1\)
\(\Leftrightarrow-2k^2+10k-12=-1\)
\(\Leftrightarrow2k^2-10k+12=1\)
\(\Leftrightarrow2k^2-10k+11=0\)
\(\Leftrightarrow\orbr{\begin{cases}k=\frac{5+\sqrt{3}}{2}\\k=\frac{5-\sqrt{3}}{2}\end{cases}}\)
a. Thay k=5, ta có hpt:
\(\left\{{}\begin{matrix}5x-y=2\\x+5y=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{11}{26}\\y=\dfrac{3}{26}\end{matrix}\right.\)
Vậy hpt có nghiệm là \(\left(\dfrac{11}{26};\dfrac{3}{26}\right)\)
b.ĐK: \(k\ne-\dfrac{1}{k}\)\(\Leftrightarrow k\forall R\)
hpt\(\Leftrightarrow\left\{{}\begin{matrix}kx-y=2\left(1\right)\\kx+k^2y=k\left(2\right)\end{matrix}\right.\)
Trừ hai pt, ta được: \(\left(k^2+1\right)y=k-2\)\(\Leftrightarrow y=\dfrac{k-2}{k^2+1}\)
Thay vào (1), ta có: \(kx=2+\dfrac{k-2}{k^2+1}\)\(\Leftrightarrow x=\dfrac{2k^2+k}{k^3+k}\)\(=\dfrac{2k+1}{k^2+1}\)
\(x+y=\dfrac{3k-1}{k^2+1}\)
\(\dfrac{3k-1}{k^2+1}=\dfrac{-3}{k^2+1}\)
\(\Rightarrow k=\dfrac{-2}{3}\)