K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để hai đường trùng nhau thì k-2=6-2k và -2m+5=m-1

=>3k=8 và -3m=-6

=>k=8/3 và m=2

b: Để hai đường song song thì k-2=6-2k và -2m+5<>m-1

=>k=8/3 và m<>2

c: Để hai đường cắt nhau thì k-2<>6-2k

=>k<>8/3

d: Để hai đường cắt nhau trên trục tung thì k-2<>6-2k và -2m+5=m-1

=>m=2 và k<>8/3

e: m=3

=>(d1): y=(k-2)x+2 và (d2): y=(6-2k)x-1

Để hai đường cắt nhau trên trục hoành thì k-2<>6-2k và -2/k-2=1/6-2k

=>k<>8/3 và -12+4k=k-2

=>3k=10 và k<>8/3

=>k=10/3

b: Để hai đường song song thì \(\left\{{}\begin{matrix}2m+1=2\\2k-3< >3k\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k< >3\end{matrix}\right.\)

2 tháng 1 2022

a, để 2 đường thẳng cắt nhau thì a≠a' hay:\(2\ne2m+1\Rightarrow m\ne\dfrac{1}{2}\)

b, để 2 đường thẳng song song thì \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}2=2m+1\\3k\ne2k-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k\ne-3\end{matrix}\right.\)

c, để 2 đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}a=a'\\b=b'\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}2=2m+1\\3k=2k-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k=-3\end{matrix}\right.\)

2:

a: Thay x=0 và \(y=\sqrt{2}\) vào y=2x+b, ta được:

\(b+2\cdot0=\sqrt{2}\)

=>\(b=\sqrt{2}\)

b: Thay x=-2 và y=-2 vào y=-4x+b,ta được:

b-4(-2)=-2

=>b+8=-2

=>b=-10

c: Vì (d)//y=-căn 3*x nên a=-căn 3

=>\(y=-\sqrt{3}\cdot x+b\)

Thay x=1 và \(y=3-\sqrt{3}\) vào (d),ta được:

\(b-\sqrt{3}=3-\sqrt{3}\)

=>b=3

23 tháng 8 2023

`a)` Hai đường thẳng cắt nhau `<=>{(a ne a'),(a' ne 0):}`

                 `<=>{(3 ne -2m+1),(-2m+1 ne 0):}<=>{(m ne -1),(m ne 1/2):}`

`b)` Hai đường thẳng song song `<=>{(a' ne 0),(a=a'),(b ne b'):}`

           `<=>{(m ne 1/2),(3=-2m+1),(-2k ne 2k-4):}`

          `<=>{(m=-1),(k ne 1):}`

16 tháng 12 2022

m=3 nên (d1): y=(k-2)x+2 và (d2): y=(6-2k)x-1

Để (d1) cắt (d2) trên trục hoành thì

\(\left\{{}\begin{matrix}6-2k< >k-2\\\dfrac{-2}{k-2}=\dfrac{1}{6-2k}=\dfrac{-1}{2k-6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3k< >-4\\2\left(2k-6\right)=k-2\end{matrix}\right.\)

=>k<>4/3 và 4k-12-k+2=0

=>k=10/3

16 tháng 12 2022

Cắt nhau trên trục hoành `=>y=0`

Thay `y=0;m=3` vào `2` đường thẳng có hệ:

  `{(0=(k-2)x+3-1),(0=(6-2k)x+5-2.3):}`

`<=>{(kx-2x=-2),(2kx-6x=-1):}`

`<=>{(2kx-4x=-4),(2kx-6x=-1):}`

`<=>{(x=-3/2),(3k. (-3/2)-4.(-3/2)=-4):}`

`<=>{(x=-3/2),(k=20/9):}`

AH
Akai Haruma
Giáo viên
11 tháng 1 2022

Lời giải:

Để hai đường thẳng song song nhau thì:

\(\left\{\begin{matrix} k+3=4\\ m+1\neq 3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m\neq 1\end{matrix}\right.\)

Để hai đt cắt nhau thì: \(\left\{\begin{matrix} k+3\neq 4\\ m\in\mathbb{R}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k\neq 1\\ m\in\mathbb{R}\end{matrix}\right.\)

Để hai đt trùng nhau thì: \(\left\{\begin{matrix} k+3=4\\ m+1=3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m=1\end{matrix}\right.\)

Để hai đt cắt nhau tại 1 điểm trên trục tung thì:

PT hoành độ giao điểm $(k+3)x+m+1=4x+3-m$ nhận $x=0$ là nghiệm 

$\Leftrightarrow x(k-1)+(2m-2)=0$ nhận $x=0$ là nghiệm 

$\Leftrightarrow 2m-2=0$

$\Leftrightarrow m=1$

Vậy $m=1$ và $k\in\mathbb{R}$ bất kỳ.

Để 2 đt vuông góc thì $(k+3).4=-1$ và $m$ bất kỳ 

$\Leftrightarrow k=\frac{-13}{4}$ và $m$ bất kỳ.

19 tháng 12 2021

a: Để hai đường thẳng song song thì a-1=3

hay a=4

a: Để hai đường này cắt nhau thì 2k+1<>k-1

=>k<>-2

b: Để hai đường song song thì 2k+1=k-1

=>k=-2

c: Hai đường này không thể trùng nhau được bởi vì b<>b'(3<>-4)

22 tháng 12 2023

a: Để hai đường thẳng y=(a-1)x+5 và y=(3-a)x+2 song song với nhau thì \(\left\{{}\begin{matrix}a-1=3-a\\5\ne2\left(đúng\right)\end{matrix}\right.\)

=>a-1=3-a

=>2a=4

=>a=2

b: Để hai đường thẳng y=kx+(m-2) và y=(5-k)x+4-m trùng nhau thì \(\left\{{}\begin{matrix}k=5-k\\m-2=4-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2k=5\\2m=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{5}{2}\\m=3\end{matrix}\right.\)