1/1x3+1/3x5+1/5x7+.............+1/95x97+1/97x99
Giúp mình với, mình đang cần gấp! Thank
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\cdot\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right)\)
Theo quy luật :\(2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(2.\left(1-\frac{1}{15}\right)\)
\(2.\frac{14}{15}\)
\(\frac{28}{15}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+\frac{1}{5}-\frac{1}{7}-\frac{1}{6}+\frac{1}{8}+\frac{1}{7}-\frac{1}{9}-\frac{1}{8}+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(1+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}.\frac{11}{10}\)
\(\Rightarrow S=\frac{11}{20}\)
Lời giải:
Gọi tổng trên là $A$
$A=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)$
$=2\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{27-25}{25.27}\right)$
$=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{25}-\frac{1}{27}\right)$
$=2\left(1-\frac{1}{27})=\frac{52}{27}$
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}< 1\)
Vậy \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}< 1\)
\(\dfrac{8}{1\cdot3}+\dfrac{8}{3\cdot5}+...+\dfrac{8}{89\cdot91}\)
\(=4\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{89}-\dfrac{1}{91}\right)\)
\(=4\cdot\dfrac{90}{91}=\dfrac{360}{91}\)
B=1x3+3x5+5x7+7x9+...+95x97+97x99
= 1.(1+2)+3.(3+2)+5.(5+2)+....+95.(95+2)+97.(97+2)
= 12+1.2+32+3.2 +52+5.2+...+952+95.2+ 972+97.2
= (12+32 +52+...+952+ 972)+(1.2+3.2 +5.2+...+95.2+97.2)
= (12+32 +52+...+952+ 972)+ 2.(1+3 +5+...+95+97)
Đặt : A = 12+32 +52+...+952+ 972
C =1+3 +5+...+95+97
tính A và C (tìm câu hỏi tương tự hình như anh thấy họ làm rồi đấy) sau đó thay vào tính B
A=1/6+1/12+1/20+1/30+1/42+1/56+1/72
A=1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9
A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/2-1/9
Câu B tương tự nha bạn :333