K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

ĐK: \(-2\le x\le3\)

PT \(\Leftrightarrow\sqrt{3-x}=3-\sqrt{x+2}\)

\(\Leftrightarrow3-x=9+x+2-6\sqrt{x+2}\)

\(\Leftrightarrow6\sqrt{x+2}=2x+8\)

\(\Leftrightarrow36x+72=4x^2+32x+64\)

\(\Leftrightarrow4x^2-4x-8=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (TM)

Vậy phương trình có tập nghiệm \(S=\left\{-1;2\right\}\)

27 tháng 10 2020

\(=\sqrt{3-x}=3-\sqrt{x+2}\Leftrightarrow3-x=9-6\sqrt{x+2}+x+2\)

\(\Leftrightarrow2x+8-6\sqrt{x+2}=0\Leftrightarrow x+4-3\sqrt{x+2}\)

\(\Leftrightarrow\left(x+2\right)-2.\frac{3}{2}\sqrt{x+2}+\frac{9}{4}-\frac{1}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x+2}-\frac{3}{2}\right)^2=\frac{1}{4}\Rightarrow\left[{}\begin{matrix}\sqrt{x+2}-\frac{3}{4}=\frac{1}{2}\\\sqrt{x+2}-\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\)

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

14 tháng 8 2017

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

20 tháng 8 2017

Điều kiện xác định tự làm nha b.

Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}}\)

\(\Rightarrow a^2+4b^2=10-3x\)

Từ đây ta có pt trở thành

\(3a-6b+4ab-a^2-4b^2=0\)

\(\left(a-2b\right)\left(a-2b-3\right)=0\)

Tới đây đơn giản rồi b làm tiếp nhé

20 tháng 8 2017

91 nhé

đặt \(\sqrt{4-x^2}=y\)
ta có phương trình \(\left(x+y\right)=2+3xy\)

bình lên rồi phân tích còn cái vừa nãy tớ nhầm bài khác xin lỗi

14 tháng 8 2017

bình phương 2 vế và giải như lớp 8

14 tháng 8 2017

nhưng cậu giải được phương trình bậc 4 chứ

20 tháng 8 2017

câu này cậu dùng bunhia vt rồi sd cối là đc làm đc n bài nào rồi

16 tháng 12 2021

ĐKXĐ: ...

\(\sqrt{x^2-x-30}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)

\(\Leftrightarrow\sqrt{\left(x+5\right)\left(x-6\right)}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)(*)

đặt \(\sqrt{x+5}=a\ge0;\sqrt{x-6}=b\ge0\)

\(\text{pt(*)}\Leftrightarrow ab-3a-2b=-6\\ \Leftrightarrow\Leftrightarrow ab-3a-2b+6=0\\ \Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\\ \Leftrightarrow\left(a-2\right)\left(b-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=2\\\sqrt{x-6}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+5=4\\x-6=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=15\left(tm\right)\end{matrix}\right.\)

28 tháng 9 2021

\(x+\sqrt{x}+\sqrt{x+3}+\sqrt{x^2+3x}=6\left(đk:x\ge0\right)\)

\(\Leftrightarrow x+\sqrt{x}+\sqrt{x+3}+\sqrt{x\left(x+3\right)}=6\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x+3}\left(\sqrt{x}+1\right)=6\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+\sqrt{x+3}\right)=6\)

Do \(x\ge0\Leftrightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+\sqrt{x+3}\ge\sqrt{x}+\sqrt{3}\ge\sqrt{x}+1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}+1=2\\\sqrt{x}+\sqrt{x+3}=3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}+1=1\\\sqrt{x}+\sqrt{x+3}=6\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\left\{{}\begin{matrix}x=0\\\sqrt{x}+\sqrt{x+3}=6\left(VLý\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)