@)))))))))))))))))) x !))))))))))))))))) = ?
@ = 2, ) = 0, ! = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)x^2-2x-1=0
<=> (x^2-2x+1)-2=0
<=>(x-1)2 =2
=>x-1 = \(\pm\sqrt{2}\)
=> x= \(\pm\sqrt{2}\) +1
2) x^2-x-1=0
<=> (x^2-x+1/4) -5/4=0
<=>(x+1/2)2= 5/4
=> x+1/2 = \(\pm\sqrt{\dfrac{5}{4}}\)
=>x=\(\pm\sqrt{\dfrac{5}{4}}\) - 1/2
3)x^2+x-3=0
<=> (x^2 + x + 1/4) -13/4=0
<=>(x+1/2)2 = 13/4
=> x+1/2 = \(\sqrt{\dfrac{13}{4}}\)
=> x= \(\sqrt{\dfrac{13}{4}}\) -1/2
4) 4x^2-4x-1=0
<=> (4x^2-4x+1)-2=0
<=>(2x-1)2 -2=0
<=> (2x-1)2 - \(\left(\sqrt{2}\right)^2\) =0
<=> (2x-1 - \(\sqrt{2}\) ) . (2x-1 +\(\sqrt{2}\) )=0
=> 2x-1-\(\sqrt{2}\) =0 hoặc 2x-1+\(\sqrt{2}\) =0
=> 2x= 1+\(\sqrt{2}\) hoặc 2x= 1 - \(\sqrt{2}\)
=> x=\(\dfrac{1+\sqrt{2}}{2}\) hoặc x=\(\dfrac{1-\sqrt{2}}{2}\)
a, (\(x-2\))2 - (2\(x\) + 3)2 = 0
(\(x\) - 2 - 2\(x\) - 3)(\(x\) - 2 + 2\(x\) + 3) = 0
(-\(x\) - 5)(3\(x\) +1) = 0
\(\left[{}\begin{matrix}-x-5=0\\3x+1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\3x=-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\) { -5;- \(\dfrac{1}{3}\)}
b, 9.(2\(x\) + 1)2 - 4.(\(x\) + 1)2 = 0
{3.(2\(x\) + 1) - 2.(\(x\) +1)}{ 3.(2\(x\) +1) + 2.(\(x\) +1)} = 0
(6\(x\) + 3 - 2\(x\) - 2)(6\(x\) + 3 + 2\(x\) + 2) = 0
(4\(x\) + 1)(8\(x\) + 5) =0
\(\left[{}\begin{matrix}4x+1=0\\8x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{5}{8}\end{matrix}\right.\)
S = { - \(\dfrac{5}{8}\); \(\dfrac{-1}{4}\)}
d, \(x^2\)(\(x\) + 1) - \(x\) (\(x+1\)) + \(x\)(\(x\) -1) = 0
\(x\left(x+1\right)\).(\(x\) - 1) + \(x\)(\(x\) -1) = 0
\(x\)(\(x\) -1)(\(x\) + 1 + 1) = 0
\(x\left(x-1\right)\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)
S = { -2; 0; 1}
a) \(2{x^2} + 3x + 1 \ge 0\)
Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x = - 1,x = \frac{{ - 1}}{2}\)
hệ số \(a = 2 > 0\)
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le - 1\\x \ge - \frac{1}{2}\end{array} \right.\)
Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)
b) \( - 3{x^2} + x + 1 > 0\)
Tam thức bậc hai \(f\left( x \right) = - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)
Hệ số \(a = - 3 < 0\)
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)
Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)
c) \(4{x^2} + 4x + 1 \ge 0\)
Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)
hệ số \(a = 4 > 0\)
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)
Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)
d) \( - 16{x^2} + 8x - 1 < 0\)
Tam thức bậc hai \(f\left( x \right) = - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)
hệ số \(a = - 16 < 0\)
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)
Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)
e) \(2{x^2} + x + 3 < 0\)
Ta có \(\Delta = {1^2} - 4.2.3 = - 23 < 0\) và có \(a = 2 > 0\)
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)
Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)
g) \( - 3{x^2} + 4x - 5 < 0\)
Tam thức bậc hai \(f\left( x \right) = - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) = - 11 < 0\) và có \(a = - 3 < 0\)
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)
Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)
a)\(\left(x-2\right)^2-\left(2x+3\right)^2=0\Rightarrow\left(x-2+2x+3\right)\left(x-2-2x-3\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(-x-5\right)=0\Rightarrow\left[{}\begin{matrix}3x+1=0\\-x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
b)\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\Rightarrow\left[3\left(2x+1\right)+2\left(x+1\right)\right]\left[3\left(2x+1\right)-2\left(x+1\right)\right]=0\)
\(\Rightarrow\left[8x+5\right]\left[4x+1\right]=0\Rightarrow\left[{}\begin{matrix}8x+5=0\\4x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
c)\(x^3-6x^2+9x=0\Rightarrow x\left(x^2-6x+9\right)=0\Rightarrow x\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)\left(x+1\right)+1\right]=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)^2+1\right]=0\)
Do \(\left(x+1\right)^2+1>0\)
\(\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a) Ta có: \(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)hay x=1
Vậy: S={1}
c) Ta có: \(x+x^4=0\)
\(\Leftrightarrow x\left(x^3+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)
mà \(x^2-x+1>0\forall x\)
nên x(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: S={0;-1}
a) 4x(x+1)=8(x+1)
<=>4x(x+1)-8(x+1)=0
<=>(4x-8)(x+1)=0
<=>\(\left[\begin{array}{} 4x-8=0\\ x+1=0 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=2\\ x=-1 \end{array} \right.\)
Vậy...
b)x(x-1)-2(1-x)=0
<=>(x+2)(x-1)=0
<=>\(\left[\begin{array}{} x+2=0\\ x-1=0 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=-2\\ x=1 \end{array} \right.\)
Vậy...
c)5x(x-2)-(2-x)=0
<=>(5x+1)(x-2)=0
<=>\(\left[\begin{array}{} 5x+1=0\\ x-2 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=-1/5\\ x=2 \end{array} \right.\)
d)5x(x-200)-x+200=0
<=>(5x-1)(x-200)=0
<=>\(\left[\begin{array}{} 5x-1=0\\ x-200=0 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=1/5\\ x=200 \end{array} \right.\)
e)\(x^3+4x=0 \)
\(\Leftrightarrow x(x^2+4)=0 \)
\(\Leftrightarrow \left[\begin{array}{} x=0\\ x^2+4=0 (loại vì x^2+4>=0 với mọi x) \end{array} \right.\)
Vậy x=0
f)\((x+1)=(x+1)^2\)
\(\Leftrightarrow (x+1)-(x+1)^2=0\)
\(\Leftrightarrow (x+1)(1-x-1)=0\)
\(\Leftrightarrow (x+1)(-x)=0\)
\(\Leftrightarrow \left[\begin{array}{} x=-1\\ x=0 \end{array} \right.\)
Vậy....
a) \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(2.\left(2x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow2x+1=0\) vì \(x^2+1>0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\frac{-1}{2}\)
b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\x-5=0\end{cases}}\)hoặc \(5x+1=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7}{2}\\x=5\end{cases}}\) hoặc \(x=\frac{-1}{5}\)
vậy...
làm tiếp
c) \(\left(x^2+4\right)\left(x-2\right)\left(3-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3-2x=0\end{cases}}\) vì \(x^2+4>0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
vậy...
d) \(\left(x-6\right)\left(x+1\right)-2\left(x+1\right)=0\)
\(\left(x-6-2\right)\left(x+1\right)=0\)
\(\left(x-8\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
vậy...
e) \(\left(x-1\right)^2-4=0\)
\(\left(x-1\right)^2-2^2=0\)
\(\left(x-1-2\right)\left(x-1+2\right)=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
vậy...
a. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+7-1-2.2=8\ne0\)
\(\Rightarrow x_0=2\) không phải là nghiệm của pt
b. Thay \(x_0=-2\) vào phương trình, ta được:
\(\left(-2\right)^2-3.\left(-2\right)-10=0\)
\(\Rightarrow x_0=-2\) là nghiệm của pt
c. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+4-2.2+2=0\)
\(\Rightarrow x_0=2\) là nghiệm của pt
d. Thay \(x_0=-1\) vào phương trình, ta được:
\(\left(-1+1\right)\left(-1-2\right)\left(-1-5\right)=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
e. Thay \(x_0=-1\) vào phương trình, ta được:
\(2.\left(-1\right)^2+3.\left(-1\right)+1=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
f. Thay \(x_0=5\) vào phương trình, ta được:
\(4.5^2-3.5-2.5+1=76\ne0\)
\(\Rightarrow x_0=5\) không là nghiệm của pt
bằng 0
cái gỉ vậy