Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tai H. M, N, P lần lượt là các điểm đối xứng của H qua BC, AC và AB . TÍnh AM/AD + BN/BE + CP/CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: M đối xứng H qua BC
Gọi AD là đường kính, I là giao của HD và BC
góc ABD=1/2*sđ cung AD=90 độ
=>BD//CH
góc ACD=1/2*sđ cung AD=90 độ
=>CD//BH
mà BD//CH
nên BHCD là hình bình hành
=>BC căt HD tại trung điểm của mỗi đường
=>I là trung điểm chung của HD và BC và BH//CD
góc AMD=1/2*sđ cung AD=90 độ
=>MD vuông góc AM
=>MD//BC
=>BCDM là hình thang cân
=>góc MBC=góc DCB=góc HBC
=>BC là phân giác của góc HBM
mà BC là trung tuyến của ΔHBM
nên ΔHMB cân tại B
=>BC là trug trực của MH
=>M đối xứng H qua BC
1) Ta có: BH vuông góc với AC
CK vuông góc với AC
=> BH//CK
Chứng minh tương tự ta có: CH//Bk
Xét tứ giác BHCK có: BH//CK
CH//BK
=> Tứ giác BHCK là hbh
Có M là trung điểm của BC=> M là trung điểm của HK=>M,H,K thẳng hàng
2.gọi HI cắt BC tại J
Xét tam giác HIK có: J là trung điểm của HI
M là trung điểm của HK
=> JM là đường trung bình trong tam giác HIK
=> IK//MJ hay IK//BC
Xét tam giác BHJ và tam giác BIJ có;
HJ=JI
góc BJH=góc BJI=90
BJ chung
=> Tam giác BHJ = tam giác BIJ
=> Góc HBJ= góc IBJ
Mà góc HBJ= góc BCK( do BH//CK)
Xét tứ giác BIKC có:
KI//BC
góc IBC= góc KCB
=>Tứ giác BIKC là hình thang cân
3.Xét tứ giác GHCK có: GK//HC (doBK//HC)
=> Tứ giác GHCK là hình thang
Để GHCK là hình thang cân<=>góc GHC= góc KCH(1)
mà GHC+HCB=90
KCH+HCA=90
=> (1)<=> góc HCB=góc HCA=> CH là phân giác của góc ACB
Xét tam giác ABC có : CH là phân giác của góc ACB
CH là đường cao trong tam giác ABC
=> Tam giác ABC cân tại C
Vậy tứ giác GHCK là hình thang cân<=> Tam giác ABC cân tại C