x/2-y/3 và y^2-x^2=20
MONG MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!
XIN CẢM ƠN!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
bài 2 :
Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
Với k = 1 thì x = 2 ; y = 5
Với k = - 1 thì x = -2 ; y = -5
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)
Vậy ....
Đặt x2 = a (a >= 0) , y2 = b (b >= 0)
Ta có : (a + b)/10 = (a - 2b)/7 và a2b2 = 81
(a + b)/10 = (a - 2b)/7 = [(a + b) - (a - 2b)]/10 - 7 = 3b/3 = b (1)
(a + b)/10 = (a - 2b)/7 = (2a + 2b)/20 = [(2a + 2b) + (a - 2b)]/(20 + 7) = 3a/27 = a/9 (2)
Từ (1) và (2) => a/9 = b => a = 9b
Do a2b2 = 81 nên (9b)2 . b2 = 81 => 81b4 = 81 => b4 = 1 => b = 1 (vì b >= 0)
Suy ra : a = 9.1 = 9
Ta có : x2 = 9 => x = 3 hoặc x = -3
y2 = 1 => y = 1 hoặc y = -1
Vậy : ...
P/S : Do bấm công thức Toán nó bị lỗi nên thông cảm
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
Áp dụng t/c dtsbn
\(\dfrac{x+1}{2}=\dfrac{y+2}{3}=\dfrac{z+2}{4}=\dfrac{3x+3-2y-4+z+2}{6-6+4}=\dfrac{-105+1}{4}=\dfrac{-104}{4}=-26\\ \Rightarrow\left\{{}\begin{matrix}x+1=-52\\y+2=-78\\z+2=-104\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-54\\y=-80\\z=-106\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{2}=\dfrac{y+2}{3}=\dfrac{z+2}{4}=\dfrac{3x-2y+z+3-4+2}{6-6+4}=\dfrac{-105+1}{4}=-26\)
Do đó: \(\left\{{}\begin{matrix}x+1=-52\\y+2=-78\\z+2=-104\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-53\\y=-80\\z=-106\end{matrix}\right.\)
a/ \(C=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-1\right)\)
\(C=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-1\right)=x+y-1\) (do x+y-2=0)
Mà x+y-2=0 => x+y-1=1 => C=1
b/ Với x=2; y=2 Ta nhận thấy \(x^3-2y^2=2^3-2.2^2=2^3-2^3=0\) => D=0
Theo t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}-\frac{y}{3}=\frac{y^2-x^2}{3^2-2^2}=\frac{20}{5}=4\)
\(=>\hept{\begin{cases}\frac{x}{2}=4\\\frac{y}{3}=4\end{cases}}=>\hept{\begin{cases}x=8\\y=12\end{cases}}\)
lộn r lộn r