Cho tam giác OMN có MK và NI là 2 đường trung tuyến. Goi P và Q theo thứ tự là trung điểm của MI và NK. Gọi J và H lần lượt là giao điểm của PQ với MK và NI. Chứng minh:
a) PJ=HQ
b) \(JH=\frac{MN-IK}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Xét tg OMN có IM=IO và KN=KO => IK là đường trung bình của tg OMN => IK//MN
+ Xét hình thang IKNM có PI=PM và QK=QN => PQ là đường trung bình của hình thang IKNM => PQ//IK//MN
+ Xét tg IMN có PI=PM; PH//MN => PH là đường trung bình của tg IMN => PH=MN/2
+ Xét tg KMN chứng minh tương tự cũng có QJ=MN/2
=> PH+QJ=(PJ+JH)+(QH+JH)=PJ+QH+2JH=MN (*)
+ Xét tg MIK có PI=PM; PJ//IK => PJ là đường trung bình của tg MIK => PJ=IK/2
+ Xét tg NIK chững minh tương tự cũng có QH=IK/2
Thay PJ=QH=IK/2 vào (*)
=> PJ+QH+2JH=IK/2+IK/2+2JH=MN => IK+2JH=MN => JH=(MN-IK)/2
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Dương Ánh Ngọc - Toán lớp 8 - Học toán với OnlineMath
a) Xét \(\Delta ABC\)có \(AE=EB\)
\(AD=DC\)
\(\Rightarrow\)ED là đường trung bình \(\Delta ABC\)
\(\Rightarrow\hept{\begin{cases}ED=\frac{1}{2}BC\Leftrightarrow ED=\frac{1}{2}\times8=4\left(cm\right)\\ED//BC\end{cases}}\)
\(\Rightarrow\)EDCB là hình thang
Lại có : \(EM=MB\)
\(DN=NC\)
\(\Rightarrow\)MN là đường trung bình của hình thang EDCB
\(\Rightarrow MN=\frac{ED+BC}{2}=\frac{4+8}{2}=\frac{12}{2}=6\left(cm\right)\)
Vậy \(MN=6cm\)
b) Xét \(\Delta BED\)có M là trung điểm BE ; MI // ED
\(\Rightarrow\)MI là dường trung bình \(\Delta BED\)
\(\Rightarrow MI=\frac{1}{2}ED=\frac{1}{2}\times4=2\left(cm\right)\)
Xét \(\Delta CED\)có N là trung điểm CD ; NK // ED
\(\Rightarrow\)NK là đường trung bình \(\Delta CED\)
\(\Rightarrow NK=\frac{1}{2}ED=\frac{1}{2}\times4=2\left(cm\right)\)
Lại có : \(MI+IK+KN=MN\)
\(\Leftrightarrow2+IK+2=6\)
\(\Leftrightarrow IK=2\left(cm\right)\)
Vậy \(MI=IK=KN\left(=2cm\right)\)