Cho:\(\frac{2a+b}{a-2b}=\frac{c+2d}{c-2d}\).Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^2b}{c^2d}=\frac{2b^3}{2d^3}=\frac{a^3+2b^3}{c^3+2d^3}\)
=>đpcm
\(\frac{a}{a+2b}=\frac{c}{c+2d}\Rightarrow ac+2ad=ac+2bc\Rightarrow2ad=2bc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{b}{2a-b}=\frac{d}{2c-d}\Rightarrow2cb-bd=2ad-bd\Rightarrow2ad=2cb\Rightarrow ad=cd\Rightarrow\frac{a}{b}=\frac{c}{d}\)
ta có : ab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bcab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bc
⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd
⇔(c+2d)(a−2b)=(a+2b)(c−2d)⇔a+2bc+2d=a−2bc−2d(đpcm)
Bạn ơi! Phải chứng minh \(\frac{a}{b}=\frac{c}{d}\) chứ!