K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^2b}{c^2d}=\frac{2b^3}{2d^3}=\frac{a^3+2b^3}{c^3+2d^3}\)

=>đpcm

3 tháng 10 2020

ta có : ab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bcab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bc

⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd

⇔(c+2d)(a−2b)=(a+2b)(c−2d)⇔a+2bc+2d=a−2bc−2d(đpcm) 

3 tháng 10 2020

Bạn ơi! Phải chứng minh \(\frac{a}{b}=\frac{c}{d}\) chứ!

6 tháng 11 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

6 tháng 11 2016

từ \(\frac{a+b}{a}=\frac{c+d}{c}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

^-^

22 tháng 8 2019

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{5a}{5c}=\frac{2b}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}=\frac{5a-2b}{5c-2d}\)

                 \(\Rightarrow\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5c-2d}\left(đpcm\right)\)

ta có:

\(\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5c-2d}\Rightarrow\frac{5a+2b}{5c+2d}=\frac{5a-2b}{5c-2d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a-2b}{5c-2d}=\frac{5a+2b}{5c+2d}\)(đpcm)

14 tháng 10 2017

cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng giả thiết trên nha(các gt đều có nghĩa)

3 tháng 12 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\). Ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{b^3\left(k-1\right)^3}{d^3\left(k-1\right)^3}=\frac{b^3}{d^3}\)

\(\frac{3a^2+2b^2}{3c^2+2d^2}=\frac{3\left(bk\right)^2+2b^2}{3\left(dk\right)^2+2d^2}=\frac{3b^2k^2+2b^2}{3d^2k^2+2d^2}=\frac{b^2\left(3k^2+2\right)}{d^2\left(3k^2+2\right)}=\frac{b^2}{d^2}\)

Đến đây nhìn có vẻ đề sai

3 tháng 12 2018

\(\frac{a}{b}=\frac{c}{d}=k\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{\left[b\left(k-1\right)\right]^3}{\left[d\left(k-1\right)\right]^3}=\frac{b^3}{d^3}\)

\(\frac{2b^2+3a^2}{2d^2+3c^2}=\frac{4.b^2+9.k^2.b^2}{4.d^2+9.d^2.k^2}=\frac{b^2\left(4+k^2.9\right)}{d^2\left(4+9.k^2\right)}=\frac{b^2}{d^2}\)

\(Taco:\frac{b^3}{d^3}=\frac{b^2}{d^2}\Leftrightarrow b=d\)