Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{a^4}{c^4}=\frac{\left(a-2b\right)^4}{\left(c-2d\right)^4}\)mà\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{2017b^4}{2017d^4}=\frac{a^4+2017b^4}{c^4+2017d^4}\)
=> đpcm
bai bạn làm đó còn thiếu một bước, theo mk biết thì của bạn chưa làm song hay bạn làm tắt z . bạn có thể làm đầy đủ cho mk nhé
tham khảo bài tương tự này :
Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath
a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)
\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)
Từ (1) và (2) => đpcm
b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)
\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)
Từ (3) và (4) => đpcm
c, làm giống câu a
a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)
(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
từ \(\frac{a+b}{c+d}=\frac{a-2d}{c-2d}\)
=> \(\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)
=> ac - 2ab + bc - 2bd = ac - 2bc + ad - 2bd
=> -3ad = -3bc
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)
=>a=b=c=d
=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)
Ta có:a/b=b/c=c/d=d/a
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1
=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)
Thay vào M sau đó tìm được M=2
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) (đề bài)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\begin{cases}a=b\\b=c\\c=d\\d=a\end{cases}\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a\) ; \(c=a\) ; \(d=a\) vào biểu thức \(M=\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\) ta có :
\(M=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}\)
\(M=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1}{2}\)
Vậy \(M=\frac{1}{2}\)