K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2020

Sin@ = cos2@

\(\Rightarrow\) \(\frac{sin@}{cos^2@}=tan@.\frac{1}{cos@}=1\)

\(\Rightarrow\) tan@ = cos@

Mk chỉ phân tích đến đây thôi, còn ko cho dữ liệu thì mk ko chắc tìm được @ đâu

Chúc bn học tốt!

3 tháng 5 2022

MN K BT?

17 tháng 7 2021

undefined

1 tháng 5 2018

\(\sin\alpha=\dfrac{\sqrt{5}}{3}\Rightarrow\alpha=48,1896851\)

\(\Rightarrow\cos2\alpha\sin\alpha=-\dfrac{1}{9}\cdot\dfrac{\sqrt{5}}{3}=-\dfrac{\sqrt{5}}{27}\)

1 tháng 5 2018

có cách khác nữa ko bạn

26 tháng 8 2018

tớ cần câu trả lời

NV
15 tháng 2 2019

\(\dfrac{1+cos2a-sin2a}{1+cos2a+sin2a}=\dfrac{2cos^2a-2sina.cosa}{2cos^2a+2sinacosa}\)

\(=\dfrac{2cosa\left(cosa-sina\right)}{2cosa\left(cosa+sina\right)}=\dfrac{cosa-sina}{cosa+sina}=\dfrac{\sqrt{2}sin\left(\dfrac{\pi}{4}-a\right)}{\sqrt{2}cos\left(\dfrac{\pi}{4}-a\right)}=tan\left(\dfrac{\pi}{4}-a\right)\)

\(\dfrac{1+cos2a-cosa}{sin2a-sina}=\dfrac{2cos^2a-cosa}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)

14 tháng 10 2023

 Sửa lại đề bài là \(cos\left(15^o+2\alpha\right)\) (chứ không phải là \(cos^2\left(15^o+2\alpha\right)\) nhé)

 Ta có \(VT=sin^2\left(45^o+\alpha\right)-sin^2\left(30^o-\alpha\right)-sin15^o.cos^2\left(15^o+2\alpha\right)\)

\(=\left[sin\left(45^o+\alpha\right)+sin\left(30^o-\alpha\right)\right]\left[sin\left(45^o+\alpha\right)-sin\left(30^o-\alpha\right)\right]-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=2sin\left(\dfrac{75^o}{2}\right)cos\left(\dfrac{2\alpha+15^o}{2}\right).2cos\left(\dfrac{75^o}{2}\right)sin\left(\dfrac{2\alpha+15^o}{2}\right)-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=sin75^o.sin\left(2\alpha+15^o\right)-sin15^o.cos^2\left(2\alpha+15^o\right)\)

\(=sin\left(2\alpha+15^o-15^o\right)\) (dùng \(sin\left(\alpha-\beta\right)=sin\alpha.cos\beta-sin\beta.cos\alpha\))

\(=sin2\alpha=VP\)

Vậy đẳng thức được chứng minh.

14 tháng 10 2023

Mấy chỗ kia bạn sửa hết \(cos^2\left(15^o+2\alpha\right)\) thành \(cos\left(15^o+2\alpha\right)\) nhé.

\(\cos\alpha=\sqrt{1-\dfrac{9}{25}}=\dfrac{4}{5}\)

a: \(A=\cos\alpha\cdot\sin^3\alpha+\cos^3\alpha\cdot\sin\alpha\)

\(=\dfrac{4}{5}\cdot\dfrac{27}{125}+\dfrac{64}{125}\cdot\dfrac{3}{5}\)

\(=\dfrac{4\cdot27+64\cdot3}{625}\)

\(=\dfrac{300}{625}=\dfrac{12}{25}\)