K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

\(\sin\alpha=\dfrac{\sqrt{5}}{3}\Rightarrow\alpha=48,1896851\)

\(\Rightarrow\cos2\alpha\sin\alpha=-\dfrac{1}{9}\cdot\dfrac{\sqrt{5}}{3}=-\dfrac{\sqrt{5}}{27}\)

1 tháng 5 2018

có cách khác nữa ko bạn

17 tháng 7 2021

undefined

11 tháng 5 2017

a) \(\dfrac{tan2\alpha}{tan4\alpha-tan2\alpha}=\dfrac{sin2\alpha}{cos2\alpha}:\left(\dfrac{sin4\alpha}{cos4\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\right)\)
\(=\dfrac{sin2\alpha}{cos2\alpha}:\dfrac{sin4\alpha cos2\alpha-sin2\alpha cos4\alpha}{cos4\alpha cos2\alpha}\)
\(=\dfrac{sin2\alpha}{cos2\alpha}.\dfrac{cos4\alpha.cos2\alpha}{sin2\alpha}=cos4\alpha\).

11 tháng 5 2017

b) \(\sqrt{1+sin\alpha}-\sqrt{1-sin\alpha}=\sqrt{sin^2\dfrac{\alpha}{2}+2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}}\)\(-\sqrt{sin^2\dfrac{\alpha}{2}-2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}}\)
\(=\sqrt{\left(sin\dfrac{\alpha}{2}+cos\dfrac{\alpha}{2}\right)^2}-\sqrt{\left(sin\dfrac{\alpha}{2}-cos\dfrac{\alpha}{2}\right)^2}\)
\(=\left|sin\dfrac{\alpha}{2}+cos\dfrac{\alpha}{2}\right|-\left|sin\dfrac{\alpha}{2}-cos\dfrac{\alpha}{2}\right|\)
\(0< \alpha< \dfrac{\pi}{2}\) nên \(0< \alpha< \dfrac{\pi}{4}\).
Trong \(\left(0;\dfrac{\pi}{4}\right)\) thì \(sin\dfrac{\alpha}{2}\) tăng dần từ 0 tới \(\dfrac{\sqrt{2}}{2}\)\(cos\dfrac{\alpha}{2}\) giảm dần từ 1 tới \(\dfrac{\sqrt{2}}{2}\) nên \(\left|sin\dfrac{\alpha}{4}-cos\dfrac{\alpha}{4}\right|=-\left(sin\dfrac{\alpha}{4}-cos\dfrac{\alpha}{4}\right)=cos\dfrac{\alpha}{4}-sin\dfrac{\alpha}{4}\).
Vì vậy:
\(\left|sin\dfrac{\alpha}{2}+cos\dfrac{\alpha}{2}\right|-\left|sin\dfrac{\alpha}{2}-cos\dfrac{\alpha}{2}\right|\)
\(=sin\dfrac{\alpha}{4}+cos\dfrac{\alpha}{4}-\left(cos\dfrac{\alpha}{4}-sin\dfrac{\alpha}{4}\right)=2sin\dfrac{\alpha}{4}\).

17 tháng 4 2017

a) \(\dfrac{\sin2\text{a}+\cos a}{1+\cos2\text{a}+\cos a}=2\tan a\)

9 tháng 5 2017

a) \(\dfrac{sin2\alpha+sin\alpha}{1+cos2\alpha+cos\alpha}=\dfrac{2sin\alpha cos\alpha+sin\alpha}{2cos^2\alpha+cos\alpha}\)\(=\dfrac{sin\alpha\left(2cos\alpha+1\right)}{cos\alpha\left(2cos\alpha+1\right)}=\dfrac{sin\alpha}{cos\alpha}=tan\alpha\).

26 tháng 4 2018

\(a\) thuộc góc phần tư thứ III -> sin\(a\) < 0

+) sin\(a\)=-\(\sqrt{1-cos^2a}\)=-\(\sqrt{1-\left(\dfrac{-12}{13}\right)^2}\)=\(\dfrac{-5}{13}\)

\(cos2a=cos^2a-sin^2a\)=\(\left(\dfrac{-12}{13}\right)^2-\left(\dfrac{-5}{13}\right)^2=\dfrac{119}{169}\)

NV
15 tháng 2 2019

\(\dfrac{1+cos2a-sin2a}{1+cos2a+sin2a}=\dfrac{2cos^2a-2sina.cosa}{2cos^2a+2sinacosa}\)

\(=\dfrac{2cosa\left(cosa-sina\right)}{2cosa\left(cosa+sina\right)}=\dfrac{cosa-sina}{cosa+sina}=\dfrac{\sqrt{2}sin\left(\dfrac{\pi}{4}-a\right)}{\sqrt{2}cos\left(\dfrac{\pi}{4}-a\right)}=tan\left(\dfrac{\pi}{4}-a\right)\)

\(\dfrac{1+cos2a-cosa}{sin2a-sina}=\dfrac{2cos^2a-cosa}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)

18 tháng 7 2022

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alpha Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}.

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}.

NV
25 tháng 4 2019

\(0< a< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa>0\end{matrix}\right.\)

\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}\)

\(\Rightarrow cosa=\frac{1}{2}\Rightarrow sina=cosa.tana=\frac{\sqrt{3}}{2}\)

\(cos2a=2cos^2a-1=-\frac{1}{2}\)

\(sin2a=2sina.cosa=\frac{\sqrt{3}}{2}\)

\(\Rightarrow sin\left(2a-\frac{\pi}{3}\right)=sin2a.cos\frac{\pi}{3}-cos2a.sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}\)

\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=-2-\sqrt{3}\)

NV
18 tháng 5 2021

\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cos2a+sin3a}{2cos3a.cos2a+cos3a}=\dfrac{sin3a\left(2cos2a+1\right)}{cos3a\left(2cos2a+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)

\(\dfrac{1+sin4a-cos4a}{1+sin4a+cos4a}=\dfrac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin2a.cos2a+2cos^22a-1}=\dfrac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\dfrac{sin2a}{cos2a}=tan2a\)

\(96\sqrt{3}sin\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=48\sqrt{3}sin\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)\)

\(=24\sqrt{3}sin\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=12\sqrt{3}sin\left(\dfrac{\pi}{6}\right)cos\left(\dfrac{\pi}{6}\right)\)

\(=6\sqrt{3}sin\left(\dfrac{\pi}{3}\right)=6\sqrt{3}.\dfrac{\sqrt{3}}{2}=9\)

\(A+B+C=\pi\Rightarrow A+B=\pi-C\Rightarrow tan\left(A+B\right)=tan\left(\pi-C\right)\)

\(\Rightarrow\dfrac{tanA+tanB}{1-tanA.tanB}=-tanC\Rightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)

\(\Rightarrow tanA+tanB+tanC=tanA.tanB.tanC\)