Cho B=23!+19!-15!
Chứng minh rằng B chia hết cho 11
chia hết cho 110
chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)B =23!+19!-15!.
vì 23 ! , 19! ,15! đều B chia hết cho 11 => 23!+19!-15!. chia hết cho 11 hay B chia hết cho 11
b) tương ự như a)
Ta có công thức sau:
Nếu a chia hết cho m,b chia hết cho m thì ﴾a+b﴿ chia hết cho m
Đối với số trừ cũng vậy
Ta có:
P=23!+19!‐15!. Vậy B=﴾1.2.3.4.5.vv.10.11.vv.23﴿+﴾1.2.3.4.vv.10.11.vv.19﴿‐﴾1.2.3.vv.10.11.vv.15﴿
a,Ta thấy: 23! chia hết cho 11, 19!chia hết cho 11, 15!chia hết cho 11 . Vậy 23!+19! ﴾giả sử =A﴿ chia hết cho 11 nên A‐15! chia hết cho 11. Vậy P chia hết cho 11
b,Ta thấy: 23!, 19!, 15! đều chia hết cho 10,11 hay đều chia hết cho 110. Vậy áp dụng như phần a, P chia hết cho 11
NHỚ TK MK NHA
Ta có 15! =1×2×3×4×...×15= 11×(1×2×3×4×5×6×7×8×9×10×12×...×15)
Làm tương tự các con khác như thế này.
Vì 15!chia hết cho11
19!19!chia hết cho11
23!chia hết cho 11.
Suy ra B chia hết cho 11
15!= 1×2×3×...×15= (2×5)×(1×3×4×6×7×...×15)
=10×(1××3×4×6×7×....×15)
Làm tương tự các con trên như thế này
Vì15!chia hết cho11; 10
19! Chia hết cho 11;10
23!hết chia hết chia11;10
Suy ra Bchia hét cho110
Ta có:
B = (1. 2. 3 ... 10.11...23) + (1. 2. 3 ... 10.11 ... 19) - (1. 2. 3. 10. 11 ... 15)
a) Vì mỗi số hạng và số trừ đều có thừa số 11 chia hết cho 11 nên B chia hết cho 11.
b) Vì mỗi số hạng và số trừ đều có thừa số (10.11) = 110 chia hết cho 110 nên B chia hết cho 110.
Bạn ơi,sao mà đề bài một kiểu,lời giải một kiểu vậy. Cách làm của bạn Đinh Tuấn Việt đúng rồi đó,nhưng mà đề bài thì sai rồi. Sau đây,mình cũng có góp một lời giải sau(sau khi đã sửa đề bài):
Ta có công thức sau:
Nếu a chia hết cho m,b chia hết cho m thì (a+b) chia hết cho m
Đối với số trừ cũng vậy
Ta có:
B=23!+19!-15!. Vậy B=(1.2.3.4.5.vv.10.11.vv.23)+(1.2.3.4.vv.10.11.vv.19)-(1.2.3.vv.10.11.vv.15)
a,Ta thấy: 23! chia hết cho 11, 19!chia hết cho 11, 15!chia hết cho 11 . Vậy 23!+19! (giả sử =A) chia hết cho 11 nên A-15! chia hết cho 11. Vậy B chia hết cho 11
b,Ta thấy: 23!, 19!, 15! đều chia hết cho 10,11 hay đều chia hết cho 110. Vậy áp dụng như phần a, B chia hết cho 11
+, Ta có:
\(B=23!+19!-15!\)
\(B=\left(1\times2\times...\times11\times...\times23\right)+\left(1\times2\times...\times11\times...\times19\right)-\left(1\times2\times...\times11\times...\times15\right)\)
\(B=11\times\left[\left(1\times2\times...\times10\times12\times...\times23\right)+\left(1\times2\times...\times10\times12\times...\times19\right)-\left(1\times2\times...\times10\times12\times...\times15\right)\right]\)
\(\Rightarrow B⋮11\)
+, Ta có:
\(B=23!+19!-15!\)
\(B=\left(1\times2\times...\times10\times11\times...\times23\right)+\left(1\times2\times...\times10\times11\times...\times19\right)-\left(1\times2\times...\times10\times11\times...\times15\right)\)
\(B=11\times10\times\left[\left(1\times2\times...\times9\times12\times...\times23\right)+\left(1\times2\times...\times9\times12\times...\times19\right)-\left(1\times2\times...\times9\times12\times...\times15\right)\right]\)
\(B=110\times\left[\left(1\times2\times...\times9\times12\times...\times23\right)+\left(1\times2\times...\times9\times12\times...\times19\right)-\left(1\times2\times...\times9\times12\times...\times15\right)\right]\)
\(\Rightarrow B⋮110\)
+,Ta có:
\(B=23!+19!-15!\)
\(B=\left(1\times2\times...\times5\times...\times23\right)+\left(1\times2\times...\times5\times...\times19\right)-\left(1\times2\times...\times5\times...\times15\right)\)
\(B=5\times\left[\left(1\times2\times...\times4\times6\times...\times23\right)+\left(1\times2\times...\times4\times6\times...\times19\right)-\left(1\times2\times...\times4\times6\times...\times15\right)\right]\)
\(\Rightarrow B⋮5\)
~ Chúc bạn học tốt ~!