1.Tìm x:
a./2x+1/=5x-3/
b./x-1/+/y-1/=0
Mong mọi người giúp mình.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
__________________________________________
`b)(x-3)^3+3-x=0` nhỉ?
`<=>(x-3)^3-(x-3)=0`
`<=>(x-3)(x^2-1)=0`
`<=>[(x=3),(x^2=1<=>x=+-1):}`
__________________________________________
`c)5x(x-2000)-x+2000=0`
`<=>5x(x-2000)-(x-2000)=0`
`<=>(x-2000)(5x-1)=0`
`<=>[(x=2000),(x=1/5):}`
__________________________________________
`d)3(2x-3)+2(2-x)=-3`
`<=>6x-9+4-2x=-3`
`<=>4x=2`
`<=>x=1/2`
__________________________________________
`e)x+6x^2=0`
`<=>x(1+6x)=0`
`<=>[(x=0),(x=-1/6):}`
\(a,\left(x-3\right)\left(x-1\right)=\left(x-3\right)^2\\ \Leftrightarrow\left(x-3\right)\left(x-1-x+3\right)=0\\ \Leftrightarrow2\left(x-3\right)=0\\ \Leftrightarrow x=3\)
\(b,4x^2-9=0\\ \Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(c,x^2+6x+9=0\\ \Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\)
a. \(\left(x-3\right)\left(x-1\right)=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x-1-x+3\right)=0\)
\(\Leftrightarrow2\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Bài 1:
a: \(3x-6y=3\cdot x-3\cdot2y=3\left(x-2y\right)\)
b: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)
c: \(10x\left(x-y\right)-8y\cdot\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
\(=\left(2\cdot5x+2\cdot4y\right)\left(x-y\right)\)
\(=2\left(5x+4y\right)\left(x-y\right)\)
bài 2:
a: Đề thiếu vế phải rồi bạn
b: \(x^3-13x=0\)
=>\(x\left(x^2-13\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=\pm\sqrt{13}\end{matrix}\right.\)
Bài 1:
a, $3x-6y$
$=3(x-2y)$
b, $14x^2y-21xy^2+28x^2y^2$
$=7xy(2x-3y+4xy)$
c, $10x(x-y)-8y(y-x)$
$=10x(x-y)-8y[-(x-y)]$
$=10x(x-y)+8y(x-y)$
$=(x-y)(10x+8y)$
$=2(x-y)(5x+4y)$
Bài 2:
a, Đề thiếu rồi bạn nhé.
b, \(x^3-13x=0\)
\(\Rightarrow x\left(x^2-13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\)
\(5x\left(x-3\right)=x-3\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)
a) Ta có: \(\left(2x-3\right)-\left(x-5\right)=\left(x+2\right)-\left(x-1\right)\)
\(\Leftrightarrow2x-3-x+5=x+2-x+1\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
b) Ta có: \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2x-2-5x-10=-10\)
\(\Leftrightarrow-3x=-10+10+2=2\)
hay \(x=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
a, (2x - 3) - (x - 5) = (x + 2) - (x - 1)
2x - 3 - x + 5 = x + 2 - x + 1
(2x - x) + (-3 + 5) = (x - x) + (2 + 1)
x + 2 = 3
x = 1
a)\(2x\left(x-2016\right)-2x+4032=0\)
\(\Leftrightarrow2x\left(x-2016\right)-2\left(x-2016\right)=0\)
\(\Leftrightarrow\left(2x-2\right)\left(x-2016\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x-2016\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2016=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2016\end{array}\right.\)
b)\(5x\left(x-3\right)=x-3\)
\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x-1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)
c)\(\left(3x-1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x-1\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-1+x+2\right)\left[\left(3x-1\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(4x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x+1=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=\frac{3}{2}\end{array}\right.\)
a: =>x+5>0
hay x>-5
b: =>2x+1<0
hay x<-1/2
c: =>(x-1)(x-4)>0
=>x>4 hoặc x<1
a) \(\left(\frac{1}{7}x-\frac{2}{3}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x-\frac{2}{3}=0\\-\frac{1}{5}x+\frac{3}{5}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x=\frac{2}{3}\\-\frac{1}{5}x=-\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{14}{3}\\x=3\end{cases}}\)
b)\(\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(\Leftrightarrow x.\left(\frac{1}{10}-\frac{4}{5}\right)+1=0\)
\(\Rightarrow-\frac{7}{10}x=-1\)
\(\Rightarrow x=\frac{10}{7}\)
c)\(\left(2x-\frac{1}{3}\right).\left(5x+\frac{2}{7}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=0\\5x+\frac{2}{7}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\5x=-\frac{2}{7}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-\frac{2}{35}\end{cases}}\)
a, (1/7 . x - 2/3) . (-1/5 . x + 3/5) = 0
Suy ra : 1/7 .x -2/3 = 0 hoặc -1/5 .x + 3/5 =0
Vậy : 1/7 .x = 2/3 hoặc -1/5 .x = 3/5
x =2/3 : 1/7 hoặc x = 3/5 : (-1/5)
x = 14/3 hoặc x = -3
b, 1/10 .x - 4/5 .x + 1 =0
x . (1/10 - 4/5) + 1 = 0
x . (-7/10) + 1 = 0
x . -7/10 =0 +1 = 1
x = 1 : (-7/10)
x = -10/7
c, (2x - 1/3 ) . (5x +2/7) = 0
Suy ra : 2x - 1/3 = 0 hoặc 5x + 2/7 = 0
Vậy : 2x = 1/3 hoặc 5x = 2/7
x = 1/3 : 2 hoặc x = 2/7 : 5
x = 1/6 hoặc x = 2/35
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
a) | 2x + 1 | = 5x - 3 (*)
+) Với x < -1/2
(*) <=> -( 2x + 1 ) = 5x - 3
<=> -2x - 1 = 5x - 3
<=> -2x - 5x = -3 + 1
<=> -7x = -2
<=> x = 2/7 ( không thỏa mãn )
+) Với x ≥ -1/2
(*) <=> 2x + 1 = 5x - 3
<=> 2x - 5x = -3 - 1
<=> -3x = -4
<=> x = 4/3 ( thỏa mãn )
Vậy x = 4/3
b) | x - 1 | + | y - 1 | = 0
Ta có \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y-1\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-1\right|+\left|y-1\right|\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-1=0\end{cases}}\Rightarrow x=y=1\)
Vậy x = y = 1
a) \(\left|2x+1\right|=\left|5x-3\right|\Leftrightarrow\orbr{\begin{cases}2x+1=5x-3\\2x+1=3-5x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{2}{7}\end{cases}}}\)
b) \(\left|x-1\right|+\left|y-1\right|=0\)
Vì \(\left|x-1\right|\ge0,\left|y-1\right|\ge0\Rightarrow\left|x-1\right|+\left|y-1\right|\ge0\)
Phương trình đề thỏa mãn khi và chỉ khi dấu "=" của BĐT xảy ra
Khi đó \(\hept{\begin{cases}\left|x-1\right|=0\\\left|y-1\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)