(x+1)^30+(y+2)^4+(z-3)^2020=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\hept{\begin{cases}\left(x+1\right)^{30}\ge0\forall x\\\left(y+2\right)^4\ge0\forall y\\\left(z-3\right)^{2020}\ge0\forall z\end{cases}}\Rightarrow\left(x+1\right)^{30}+\left(y+2\right)^4+\left(z-3\right)^{2020}\ge0\forall x;y;z\)
Mà theo đề bài (x + 1)30 + (y + 2)4 + (z - 3)2020 = 0
=> Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+1=0\\y+2=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-2\\z=3\end{cases}}\)
Vậy x = - 1 ; y = -2 ; z = 3
( x + 1 )30 + ( y + 2 )4 + ( z - 3 )2020 = 0 (*)
Ta có \(\hept{\begin{cases}\left(x+1\right)^{30}\ge0\forall x\\\left(y+2\right)^4\ge0\forall y\\\left(z-3\right)^{2020}\ge0\forall z\end{cases}}\Rightarrow\left(x+1\right)^{30}+\left(y+2\right)^4+\left(z-3\right)^{2020}\ge0\forall x,y,z\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+1=0\\y+2=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-2\\z=3\end{cases}}\)
Vậy ...
ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)
Đặt \(\sqrt{x-2019}=a,......\)
Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)
- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)
\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)
- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )
Vậy ...
Ta có ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 = 0
Vì ( x - 3 )2 ≥ 0 với ∀x
( y - 4 )2 ≥ 0 với ∀y
( x2 - xz )2020 ≥ 0 với ∀x; ∀z
⇒ ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 ≥ 0
Dấu " = " xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\\left(x^2-xz\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\y-4=0\\x^2-xz=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=3\end{matrix}\right.\)
Vậy x = 3; y = 4; z = 3
x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0
<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0
<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z
Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )
Thay ( 1 ) vào A , ta được :
\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)
Vậy A = 2
Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)
Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
4x2 + 2y2 + 2z2 - 4xy + 2yz - 4xz - 6y - 10z + 34 = 0
<=> [ ( 4x2 - 4xy + y2 ) - 4xz + 2yz + z2 ] + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
\(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)+\left(y-3\right)^2+\left(z-5\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào S ta được :
S = ( x - 4 )2020 + ( y - 3 )2020 + ( z - 5 )2020
= ( 4 - 4 )2020 + ( 3 - 3 )2020 + ( 5 - 5 )2020
= 0 + 0 + 0
= 0
( x + 1 )30 + ( y + 2 )4 + ( z - 3 )2020 = 0 (*)
Ta có ( x + 1 )30 ≥ 0 ∀ x
( y + 2 )4 ≥ 0 ∀ y
( z - 3 )2020 ≥ 0 ∀ z
=> ( x + 1 )30 + ( y + 2 )4 + ( z - 3 )2020 ≥ 0 ∀ x, y, z
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+1=0\\y+2=0\\z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\\z=3\end{cases}}\)
Vậy x = -1 ; y = -2 ; z = 3