K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

4x2 + 2y2 + 2z2 - 4xy + 2yz - 4xz - 6y - 10z + 34 = 0

<=> [ ( 4x2 - 4xy + y2 ) - 4xz + 2yz + z2 ] + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0

<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0

\(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)+\left(y-3\right)^2+\left(z-5\right)^2\ge0\forall x,y,z\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thế vào S ta được :

S = ( x - 4 )2020 + ( y - 3 )2020 + ( z - 5 )2020

    = ( 4 - 4 )2020 + ( 3 - 3 )2020 + ( 5 - 5 )2020

    = 0 + 0 + 0

    = 0

10 tháng 5 2018

Ta có : \(4x^2+2y^2+2z^2-4xy+2yz-6y-10z+34=0\)

\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y+z-2x=0\\y=3\\z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Suy ra \(M=2\)

4 tháng 10 2019

Ta có : 4x^2+2y^2+2z^2-4xy+2yz-6y-10z+34=04x2+2y2+2z2−4xy+2yz−6y−10z+34=0

\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0⇔(4x2+y2+z2−4xy−4xz+2yz)+(y2−6y+9)+(z2−10z+25)=0

\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0⇔(y+z−2x)2+(y−3)2+(z−5)2=0

\(\Leftrightarrow\hept{\begin{cases}y+z-2x=0\\y=3\\z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Suy ra M=2M=2

ĐKXĐ: \(\left\{{}\begin{matrix}2020-y^2\ge0\\2020-z^2\ge0\\2020-x^2\ge0\end{matrix}\right.\)

Ta có:

\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}=3030\)

\(\Leftrightarrow2x\sqrt{2020-y^2}+2y\sqrt{2020-z^2}+2z\sqrt{2020-x^2}=6060\)

\(\Leftrightarrow2020-y^2-2x\sqrt{2020-y^2}+x^2+2020-z^2-2y\sqrt{2020-z^2}+y^2+2020-x^2-2z\sqrt{2020-x^2}+z^2=0\)

   \(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2+\left(\sqrt{2020-z^2}-y\right)^2+\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2=\left(\sqrt{2020-z^2}-y\right)^2=\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2020-y^2}=x\\\sqrt{2020-z^2}=y\\\sqrt{2020-x^2}=z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2020-y^2=x^2\\2020-z^2=y^2\\2020-x^2=z^2\end{matrix}\right.\)(vì \(x,y,z>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}2020=x^2+y^2\\2020=y^2+z^2\\2020=z^2+x^2\end{matrix}\right.\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)=3.2020\)

\(\Rightarrow x^2+y^2+z^2=3.1010=3030\)

\(\Rightarrow A=x^2+y^2+z^2=3030\)

Vậy \(A=3030\)

 

 

30 tháng 10 2021

hay wa 😍

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow (4x^2-4xy+y^2)+y^2+2z^2-2z(2x-y)-6y-10z+34=0\)

\(\Leftrightarrow (2x-y)^2-2z(2x-y)+z^2+y^2+z^2-6y-10z+34=0\)

\(\Leftrightarrow (2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0\)

\(\Leftrightarrow (2x-y-z)^2+(y-3)^2+(z-5)^2=0\)

Do \((2x-y-z)^2; (y-3)^2; (z-5)^2\geq 0, \forall x,y,z\), nên để tổng của chúng bẳng $0$ thì:
\((2x-y-z)^2=(y-3)^2=(z-5)^2=0\Rightarrow \left\{\begin{matrix} y=3\\ z=5\\ x=4\end{matrix}\right.\)

\(\Rightarrow S=(x-4)^{2014}+(y-4)^{2015}+(z-4)^{2016}=0+(-1)^{2015}+1^{2016}=-1+1=0\)

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:
Áp dụng BĐT AM-GM:

\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\leq \frac{x^2+(2020-y^2)}{2}+\frac{y^2+(2020-z^2)}{2}+\frac{z^2+(2020-x^2)}{2}=3030\)Dấu "=" xảy ra khi:

\(\left\{\begin{matrix} x^2=2020-y^2\\ y^2=2020-z^2\\ z^2=2020-x^2\end{matrix}\right.\Rightarrow x=y=z=\sqrt{1010}\)

Khi đó:

$A=3(\sqrt{1010})^2=3030$

11 tháng 12 2015

đề bài sai nhé, 6x phảy là 6y
\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(-2x+y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Vì \(\left(-2x+y+z\right)^2\ge0\)
\(\left(y-3\right)^2\ge0\)
\(\left(z-5\right)^2\ge0\)
\(\Rightarrow\left(-2x+y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow y=3;z=5;x=4\)
\(\left(x-4\right)^{2015}+\left(y-4\right)^{2015}+\left(z-4\right)^{2015}=\left(4-4\right)^{2015}+\left(3-4\right)^{2015}+\left(5-4\right)^{2015}=0\)

14 tháng 1 2018

thôi ko cần làm nữa đâu