Tìm x:
20x2+24x+18=500
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x-x^2-4=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
b) \(-9x^2+24x-18=-\left(9x^2-24x+16\right)-2\)
\(=-\left(3x-4\right)^2-2\le-2\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{4}{3}\)
\(F=-9x^2+24x-18=-\left(9x^2-24x+16\right)-2=-\left(3x-4\right)^2-2\le-2\)
\(maxF=-2\Leftrightarrow x=\dfrac{4}{3}\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=24^3-3\cdot24\cdot18\)
\(=13824-1296\)
=12528
\(-9x^2+24x-18=-\left(9x^2-2\times3x\times4+16+2\right)\)
\(=-\left(3x-4\right)^2-2\le-2\)
Các câu sau tương tự.
a) 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x
Dấu "=" xảy ra khi x = 1
=> GTLN của bthuc = -3 <=> x = 1
b) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x
Dấu "=" xảy ra khi x = -2
=> GTLN của bthuc = 4 <=> x = -2
c) -9x2 + 24x - 18 = -9( x2 - 8/3x + 16/9 ) - 17 = -9( x - 4/3 )2 - 17 ≤ -17 ∀ x
Dấu "=" xảy ra khi x = 4/3
=> GTLN của bthuc = -17 <=> x = 4/3
d) 4x - x2 - 1 = -( x2 - 4x + 4 ) + 3 = -( x - 2 )2 + 3 ≤ 3 ∀ x
Dấu "=" xảy ra khi x = 2
=> GTLN của bthuc = 3 <=> x = 2
e) 5 - x2 + 2x - 4y2 - 4y
= -( x2 - 2x + 1 ) - ( 4y2 + 4y + 1 ) + 7
= -( x - 1 )2 - ( 2y + 1 )2 + 7 ≤ 7 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = -1/2
=> GTLN của bthuc = 7 <=> x = 1 ; y = -1/2
\(a,=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)
Dấu \("="\Leftrightarrow x=1\)
\(b,=-\left(x^2+4x+4\right)+4=-\left(x+2\right)^2+4\le4\)
Dấu \("="\Leftrightarrow x=-2\)
\(c,=-\left(9x^2-24x+16\right)-2=-\left(3x-4\right)^2-2\le-2\)
Dấu \("="\Leftrightarrow x=\dfrac{4}{3}\)
\(d,=-\left(x^2-4x+4\right)+3=-\left(x-2\right)^2+3\le3\)
Dấu \("="\Leftrightarrow x=2\)
\(20x^2+24x+18=500\)
\(20x^2+24x-482=0\)
\(10x^2+12x-241=0\)
\(\orbr{\begin{cases}x=\frac{-6+\sqrt{2446}}{10}\\x=\frac{-6-\sqrt{2446}}{10}\end{cases}}\)
20x2 + 24x + 18 = 500
<=> 20x2 + 24x + 18 - 500 = 0
<=> 20x2 + 24x - 482 = 0
<=> 2( 10x2 + 12x - 241 ) = 0
<=> 10x2 + 12x - 241 = 0 (*)
\(\Delta'=b'^2-ac=\left(\frac{b}{2}\right)^2-ac=6^2-10\cdot\left(-241\right)=36+2410=2446\)
\(\Delta'>0\)nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-6+\sqrt{2446}}{10}\\x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-6-\sqrt{2446}}{10}\end{cases}}\)
Lớp 8 sao nghiệm xấu thế nhỉ ;-;