K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

\(-9x^2+24x-18=-\left(9x^2-2\times3x\times4+16+2\right)\)

\(=-\left(3x-4\right)^2-2\le-2\)

Các câu sau tương tự.

25 tháng 9 2021

\(a,=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)

Dấu \("="\Leftrightarrow x=1\)

\(b,=-\left(x^2+4x+4\right)+4=-\left(x+2\right)^2+4\le4\)

Dấu \("="\Leftrightarrow x=-2\)

\(c,=-\left(9x^2-24x+16\right)-2=-\left(3x-4\right)^2-2\le-2\)

Dấu \("="\Leftrightarrow x=\dfrac{4}{3}\)

\(d,=-\left(x^2-4x+4\right)+3=-\left(x-2\right)^2+3\le3\)

Dấu \("="\Leftrightarrow x=2\)

19 tháng 7 2021

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)

 

15 tháng 2 2022

a, \(A=-\left(x^2+8x+16-16\right)+5=-\left(x+4\right)^2+21\le21\forall x\)

Dấu ''='' xảy ra khi x = - 4

Vậy GTLN của A là 21 tại x = -4 

b, \(B=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)

\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)

Dấu ''='' xảy ra khi x = 1 ; y = -1/2 

Vậy GTLN của B là 7 tại x = 1 ; y = -1/2 

15 tháng 2 2022

TK

undefined

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

AH
Akai Haruma
Giáo viên
11 tháng 1 2021

Lời giải:

a)

$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$

Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$

b) 

$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$

$=7-(x^2-2x+1)-(4y^2+4y+1)$

$=7-(x-1)^2-(2y+1)^2$

Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$

28 tháng 7 2023

Yêu cầu đề bài của bạn

 

28 tháng 7 2023

A = - \(x^2\) - 4\(x\)

A = -(\(x^2\) + 4\(x\) + 4) + 4

A = -(\(x\) + 2)2 + 4 

Vì (\(x\) + 2)2 ≥ 0 ⇒ -(\(x\) + 2)2 ≤ 0 ⇒ - (\(x\) + 2)2 + 4  ≤ 4

⇒ Amax = 4 ⇔ \(x\) + 2 = 0 ⇔ \(x\) = -2

Kết luận giá trị lớn nhất của A là 4 xảy ra khi \(x\) = -2

B = - 9\(x^2\) + 24\(x\) - 18

B = - (9\(x^2\) - 24\(x\) + 16) - 2

B = -(3\(x\) - 4)2 - 2 

(3\(x\) - 4)2 ≥ 0 ⇒ -(3\(x\) - 4)2 ≤ 0 ⇒ -(3\(x\) - 4)2 - 2 ≤ -2 

Bmax = -2 ⇔ 3\(x\)   - 4 = 0 ⇔ \(x\) = \(\dfrac{4}{3}\) 

Kết luận giá trị lớn nhất của B là: -2 xảy ra khi \(x\) = \(\dfrac{4}{3}\) 

28 tháng 7 2023

\(A=-x^2-4x\)

\(\Rightarrow A=-x^2-4x-4+4\)

\(\Rightarrow A=-\left(x^2+4x+4\right)+4\)

\(\Rightarrow A=-\left(x+2\right)^2+4\)

mà \(-\left(x+2\right)^2\le0,\forall x\)

\(\Rightarrow A=-\left(x+2\right)^2+4\le0+4=4\)

Vậy GTLN của A là 4

\(B=-9x^2+24x-18\)

\(\Rightarrow B=-9x^2+24x-16+16-18\)

\(\Rightarrow B=-\left(9x^2-24x+16\right)+16-18\)

\(\Rightarrow B=-\left(3x-4\right)^2-2\)

mà \(-\left(3x-4\right)^2\le0,\forall x\)

\(\Rightarrow B=-\left(3x-4\right)^2-2\le0-2=-2\)

Vậy GTLN của B là -2

28 tháng 7 2023

loading...  

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

d) Ta có: \(x^2+12x+39\)

\(=x^2+12x+36+3\)

\(=\left(x+6\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-6

e) Ta có: \(-x^2-12x\)

\(=-\left(x^2+12x+36-36\right)\)

\(=-\left(x+6\right)^2+36\le36\forall x\)

Dấu '=' xảy ra khi x=-6

f) Ta có: \(4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=1

2 tháng 7 2021

( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )

a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)

\(=\left(5x-2\right)^2+3\)

Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)

Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)

b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)

Vậy Min = 1 <=> x = 1/3

c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)

Vậy Max = -1 <=> x = 1

d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)

Vậy Min = 3 <=> x = - 6

e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)

Vậy Max = 36 <=> x = -6 .

f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

Vậy Max = 5 <=> x = 2