K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

Ta có : 12 - 22 + 32 - 42 +  52 - 62 + .... + 20192 - 20202

= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + .... + (2019 - 2020)(2020 + 2019)

= -3 - 7 - 11 - ...  - 4039

= - (3 + 7 + 11 + ... + 4039)

= - 1010.(4039 + 3) : 2 

= - 1010.2021

= -2041210

21 tháng 8 2020

\(=\left(2^2-1\right)+\left(4^2-3^2\right)+\left(6^2-5^2\right)+...+\left(2020^2-2019^2\right)=\)

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(2020-2019\right)\left(2020+2019\right)=\)

\(=3+7+11+....+4039=\frac{1009\left(4039+3\right)}{2}=\)

AH
Akai Haruma
Giáo viên
23 tháng 6 2023

1. 

$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$

2.

$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$

3. Không phù hợp để tính nhanh 

4. 

$=15^8-(15^8-1)=1$

5.

$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$

$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$

$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$

$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$

DT
23 tháng 6 2023

6:

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)

3 tháng 7 2021

a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)

b)

\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)

 

AH
Akai Haruma
Giáo viên
3 tháng 7 2021

Lời giải:

a. $153^2-53^2=(153-53)(153+53)=100.206=20600$

b. 

$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$

$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$

$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$

$=2020+2019+2018+2017+...+2+1$

$=\frac{2020.2021}{2}=2041210$

11 tháng 3 2021

Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).

5 tháng 8 2023

2² + 4² + 6² + ... + 16² + 18²

= 4.(1 + 2² + 3² + ... + 8² + 9²)

= 4.285

= 1140

5 tháng 8 2023

= 285 nha mình ghi nhầm thành 385

 

10 tháng 4 2017

5 tháng 11 2018

16 tháng 7 2018

S = 22 + 42 + 62 + ... + 202

   = (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2

   = 22.12 + 22.22 + 22.32 + ... + 22.102

   = 22 (12 + 22 + ... + 102 )

   = 4 . 385 = 1540

4 tháng 1 2022

-1306, 66

4 tháng 1 2022

12 . 25 + (-134) . 12 + (-12) : (-9)

=  12. [25+(-134) +9]

= 12. (-100)

=-1200

 

21 tháng 2 2016

=-5+(-5)+(-5)+(-5)

=-5x4=-20