| 2x - 4 | = 25 - 7y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải : Ta có: 25 là số lẻ
=> 2x2 + 7y2 là số lẻ
mà 2x2 luôn chẵn => 7y2 là số lẻ => y2 là số lẻ
=> y2 = 1 (vì 7y2 \(\le\)25 => y2 \(\le\)25/7 \(\approx\)3}
=> y = \(\pm\)1
Với y2 = 1 => 7y2 = 7
=> 2x2 + 7 = 25
=> 2x2 = 25 - 7
=> 2x2 = 18
=> x2 = 9
=> x = \(\pm\)3
Vậy x = 3 hoặc x = -3 và y = 1 hoặc y = -1 (tm)
a) \(\left|3x-4\right|+\left|3y+5\right|=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)
b) \(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=\frac{-9}{25}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{-9}{25}\\y=\frac{-9}{25}\end{cases}}}\)
c) \(\left|3-2x\right|+\left|4y+5\right|=0\)
\(\Rightarrow\hept{\begin{cases}3-2x=0\\4y+5=0\end{cases}\Rightarrow\hept{\begin{cases}2x=3\\4y=-5\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-5}{4}\end{cases}}}\)
d) \(\left|5-\frac{3}{4}x\right|+\left|\frac{2}{7}y-3\right|=0\)
\(\Rightarrow\hept{\begin{cases}5-\frac{3}{4}x=0\\\frac{2}{7}y-3=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{3}{4}x=5\\\frac{2}{7}y=3\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{20}{3}\\y=\frac{21}{2}\end{cases}}\)
e) \(\left(x-1\right)^2+\left(y+3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
Bài 1 :
\(49\left(x-2\right)^2-25\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[7\left(x-2\right)-5\left(2x+1\right)\right]\left[7\left(x-2\right)+5\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(7x-14-10x-5\right)\left(7x-14+10x+5\right)=0\)
\(\Leftrightarrow\left(-3x-19\right)\left(17x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-3x=19\\17x=9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-19}{3}\\x=\frac{9}{17}\end{cases}}}\)
Bài 2 :
+) \(9x^2-6xy+y^2-21x+7y\)
\(=\left(3x-y\right)^2-7\left(3x-y\right)\)
\(=\left(3x-y\right)\left(3x-y-7\right)\)
+) \(x^2+2x-35\)
\(=x^2+2x+1-36\)
\(=\left(x+1-6\right)\left(x+1+6\right)\)
\(=\left(x-5\right)\left(x+7\right)\)
+) \(2x^2+9x-5\)
\(=2x^2-x+10x-5\)
\(=x\left(2x-1\right)+5\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x+5\right)\)
+) \(6x^2+23x+15\)
\(=6x^2+18x+5x+15\)
\(=6x\left(x+3\right)+5\left(x+3\right)\)
\(=\left(x+3\right)\left(6x+5\right)\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-7y=0\\11x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{x}{7}=\dfrac{5}{77}\end{matrix}\right.\)
Lời giải:
a. Bạn cần viết đề bằng công thức toán để đề được rõ ràng hơn.
b. Ta có:
$(7y-x)^{2020}\geq 0$ với mọi $x,y$
$|5-11x|^{2021}\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(7y-x)^{2020}=|5-11x|^{2021}=0$
$\Leftrightarrow x=\frac{5}{11}; y=\frac{5}{77}$
Bg
|2x - 4| = 25 - 7y2
Ta có |2x - 4| > 0
=> 7y2 < 25
=> y2 < \(\frac{25}{7}\)
=> y2 < 3
=> y = -1 hay y = 0 hay y = 1
Nhận thấy |2x - 4| chẵn
=> 25 - 7y2 chẵn
=> y lẻ
=> y = -1 hoặc y = 1
=> y2 = 1
Thay vào:
|2x - 4| = 25 - 7.1
|2x - 4| = 25 - 7
|2x - 4| = 18
=> 2x - 4 = 18 hay -18
2x = 18 + 4 hay -18 + 4
2x = 22 hay -14
x = 22 : 2 hay -14 : 2
x = 11 hay -7
Vậy với y = -1 hay y = 1 thì x = 11 hay x = -7