K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2015

\(a_{n-1}=\frac{2}{n\left(n+1\right)}=\frac{2}{n}+\frac{2}{n+1}\)

\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+.......+\frac{2}{2014}-\frac{2}{2015}=1-\frac{2}{2015}=\frac{2013}{2015}\)

DD
27 tháng 5 2021

\(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+...+\frac{2014}{1+2+3+...+10000}\)

\(S=\frac{2014}{\frac{1.2}{2}}+\frac{2014}{\frac{2.3}{2}}+\frac{2014}{\frac{3.4}{2}}+...+\frac{2014}{\frac{10000.10001}{2}}\)

\(S=\frac{4028}{1.2}+\frac{4028}{2.3}+\frac{4028}{3.4}+...+\frac{4028}{10000.10001}\)

\(S=4028\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10000.10001}\right)\)

\(S=4028\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10001-10000}{10000.10001}\right)\)

\(S=4028\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10000}-\frac{1}{10001}\right)\)

\(S=4028\left(1-\frac{1}{10001}\right)=\frac{40280000}{10001}\)

29 tháng 12 2015

bn ơi mik nhớ, bn ơi mik rất nhớ cái tick

\(A=2014.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2013}\right)\)

\(A=2014.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1007.2013}\right)\)

\(A=2.2014.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2013.2014}\right)\)

\(A=2.2014.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)

\(A=2.2014.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(A=2.2014.\left(1-\frac{1}{2014}\right)\)

\(A=2.2014.\frac{2013}{2014}\)

\(A=\frac{2.2014.2013}{2014}\)

\(A=2.2013\)

\(A=4026\)

4 tháng 1 2017

A=4026

8 tháng 5 2016

A = 2014 (\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+3+....+2013}\))

A = 2014(1+1/3 + 1/6 +....+ 1/1007.2013)

A = 2014( 2/2 + 2/6 + 2/12 +.....+ 2/2013.2014)

A = 2.2014( 1/2 + 1/6 +....+ 1/2013.2014)

A = 2.2014( 1/1.2 + 1/2.3 +.....+ 1/2013.2014)

A = 2.2014( 1 - 1/2 + 1/2 - 1/3 +.....+ 1/2013 - 1/2014)

A = 2.2014( 1 - 1/2014)

A = 2.2014 . 2013/2014

A = 2.2014.2013/2014 

A = 4026

8 tháng 5 2016

Câu hỏi của h - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

16 tháng 11 2015

Bước 1: Xét mẫu số của số hạng tổng quát trong tổng trên:

      S = 1 + 2 + ... + (n - 1) + n                     ( * )

      Khi viết S theo thứ tự ngược lại la có:

      S = n + (n - 1) + ... + 2 + 1                     ( ** )

     Cộng vế với vế của ( * ) và ( ** ) ta có:

     S + S = [1 + n] + [2 + (n - 1)] + ... + [(n - 1) + 2] + [n + 1]

     2 . S = [n + 1]   + [n + 1] +   . . .    + [n + 1]       + [n + 1]     (Tổng có n số hạng [n + 1] )

     2 . S = n.(n + 1)

  => S = n.(n + 1)/2

  => Số hạng tổng quát của tổng đã cho là:

     

Bước 2: Ta có nhận xét:

    

  =>                       ( *** )

Bước 3:  Thay n = 1, 2, ... vào ( *** ) ta được các đẳng thức tương ứng:

     

     

     

     .   .   .   

Cộng các vế với nhau ta được:

        

  

  

  

Vậy tổng đã cho có kết quả bằng 2.

 

16 tháng 3 2016

nhớ phải 4 k thì làm

17 tháng 3 2016

tớ cần gấp !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 tháng 1 2016

Xét Tử số của A ta có:

\(2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)\)\(TS=\frac{2015}{2}+\frac{2015}{3}+....+\frac{2015}{2014}+\frac{2015}{2015}\)

\(TS=2015.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)\)

\(A=\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)}=2015\)

2 tháng 1 2016

toán lớp 8 dễ quá vậy

A=2015

hình như thế