K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

a) Áp dụng HTL => \(AE.AB=AH^2\)và \(AF.AC=AH^2\)

<=> Ta lần lượt có \(AE.m=AH^2\)và \(AF.n=AH^2\)

Tiếp tục áp dụng HTL => \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)=> \(\frac{1}{AH^2}=\frac{1}{m^2}+\frac{1}{n^2}=\frac{\left(m^2+n^2\right)}{m^2n^2}\)

<=> \(AH^2=\frac{\left(m^2n^2\right)}{m^2+n^2}\)

=> AE.m=\(\frac{m^2n^2}{m^2+n^2}\)và AF.n=\(\frac{m^2n^2}{m^2+n^2}\) 

=> AE; AF=......

5 tháng 8 2020

b) Lần lượt áp dụng các HTL, ta có: 

\(BE.AE=HE^2\)\(AF.CF=HF^2\)

<=> \(BE.CF.AE.AF=\left(HE.HF\right)^2\)

Do tứ giác AEHF có 3 góc vuông => AEHF là HCN => HE=AF; HF=AE; AH=EF

<=> \(BE.CF.BC=AE.AF.BC\) \(=\frac{AE.AF.BC.AH}{AH}\)\(=\frac{AE.AB.AF.AC}{AH}\)(HTL)\(=\frac{AH^2.AH^2}{AH}=AH^3=EF^3\)(Lại Áp dụng HTL) 

=> \(BC.CF.BC=EF^3\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Lời giải:

a) Áp dụng các công thức trong hệ thức lượng trong tam giác vuông đối với:

Tam giác $ABC$ vuông tại $A$, đường cao $AH$: $\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{m^2}+\frac{1}{n^2}$

$\Rightarrow AH^2=\frac{m^2n^2}{m^2+n^2}$

Tam giác $AHC$ vuông tại $H$ đường cao $HE$: $AH^2=AE.AC$

$\Leftrightarrow \frac{m^2n^2}{m^2+n^2}=AE.n\Rightarrow AE=\frac{m^2n}{m^2+n^2}$

Hoàn toàn tương tự: $AF=\frac{mn^2}{m^2+n^2}$

b) Đề đúng phải là: $EF^3=AE.BC.AF$

Xét tứ giác $AEHF$ có 3 góc vuông nên $AEHF$ là hình chữ nhật.

$\Rightarrow EF=AH\Rightarrow EF^3=AH^3(*)$

Mặt khác:

Theo phần a: $AH^2=AE.AC=AF.AB$

$\Rightarrow AH^4=AE.AF.AB.AC=AE.AF.2S_{ABC}=AE.AF.AH.BC$

$\Leftrightarrow AH^3=AE.AF.BC(**)$

Từ $(*); (**)\Rightarrow EF^3=AE.AF.BC$ (đpcm)

c)

Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABC$, đường cao $AH$ và tam giác vuoogn $AHC$ đường cao $HE$:

$BF.\sqrt{CH}+CE.\sqrt{BH}=AH.\sqrt{BC}$

$\Leftrightarrow BF.\sqrt{CH.CB}+CE.\sqrt{BH.BC}=AH.BC$

$\Leftrightarrow BF. \sqrt{AC^2}+CE.\sqrt{AB^2}=AH.BC$

$\Leftrightarrow BF.AC+CE.AB=AH.BC$

$\Leftrightarrow (BA-AF)AC+CE.AB=AH.BC$

$\Leftrightarrow AF.AC=CE.AB$

$\Leftrightarrow $AF.AC=\frac{HE^2}{AE}.AB$

$\Leftrightarrow AF.AC=\frac{AF^2}{AE}.AB$

$\Leftrightarrow AE.AC=AF.AB$ (luôn đúng vì cùng bằng $AH^2$)

Vậy........

 

 

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Hình vẽ:

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)