K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Thay \(x=\frac{1}{2}\) vào đa thức với \(a=-\frac{1}{2};b=4\) ta có :

\(f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^3+\left(-\frac{1}{2}\right)\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+2=0\)

Vậy \(x=\frac{1}{2}\) là nghiệm của đa thức.

b) Theo bài ta có :

\(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1+a-b+2=0\\\left(-2\right)^3+a.\left(-2\right)^2-\left(-2\right).b+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=-3\\4a+2b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-2b=-6\\4a+2b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=3\end{matrix}\right.\)

c) Theo câu b) ta có : \(f\left(x\right)=x^3-3x+2\)

Để \(f\left(x\right)=x+2\Leftrightarrow x^3-3x+2=x+2\)

\(\Leftrightarrow x^3-4x=0\)

\(\Leftrightarrow x.\left(x^2-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm2\end{matrix}\right.\)

2 tháng 7 2015

bạn xem lại đề cho  f(x)