Cho tam giác abc vuông cân tại A, trung tuyến BD. Gọi I là hình chiếu của C trên BD, H là hình chiếu của I trên AC. Chứng minh AH=3HI
Giải giùm mình với. Mình đang gấp. Cảm ơn ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=25cm
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)
Do đó: AD=7,5cm; CD=12,5(cm)
b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc ABD=góc DBC
nên góc ADI=góc AID
hay ΔAID cân tại A
a/ Xét hai tg vuông AIH và AHC có ^HAC chung => AIH đồng dạng AHC
b/ Ta có
2.S(ABC)=AH.BC
2.S(AHC)=AH.CH
mà CH=BC/2
=> S(ABC)=2.S(AHC) => \(\frac{AH.BC}{2}=IH.AC\) mà AC=AB nên
\(\frac{AH.BC}{2}=IH.AB\Rightarrow AH.BC=2.IH.AB\)
c/ Ta có
\(AH^2=AI.AC=16.\left(16+9\right)=16.25=4^2.5^2=\left(4.5\right)^2=400\Rightarrow AH=20\)
\(HC^2=CI.AC=9.\left(9+16\right)=3^2.5^2=\left(3.5\right)^2=15^2\Rightarrow HC=15\Rightarrow BC=2.HC=30\)
\(S_{ABC}=\frac{AH.BC}{2}=\frac{20.30}{2}=300\)
d/
+) Đặt: AB = AC = a
=> BC = a\(\sqrt{2}\)
D là trung điểm của AC -> AD = DC = a/2
=> BD = \(\frac{\sqrt{5}}{2}\)a ( pitago cho tam giác ABD vuông tại A )
+) \(\Delta\)ABD ~ \(\Delta\)ICD ( tự chứng minh )
=> \(\frac{AD}{DI}=\frac{BD}{CD}\Rightarrow\frac{\frac{a}{2}}{DI}=\frac{\frac{\sqrt{5}a}{2}}{\frac{a}{2}}\Rightarrow DI=\frac{a}{2\sqrt{5}}\)
+) \(\Delta\)DIC vuông tại I có IH là đường cao đáy DC
=> \(DI^2=DH.DC\Rightarrow DH=\frac{\frac{a^2}{4.5}}{\frac{a}{2}}=\frac{a}{10}\)=> AH = AD + DH = a/2 + a/10 = 3/5 (1)
\(IH^2=DI^2-DH^2=\frac{a^2}{20}-\frac{a^2}{100}=\frac{a^2}{25}\)=> IH = a/5 (2)
Từ (1) và (2) => AH = 3 IH
Cho cái hình, mới hc lp 8, ko bt lm