Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
click vào đường giải dưới đây
hình 9 | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam
ta có : \(\Delta BDH~\Delta BAC\Rightarrow\frac{BD}{DH}=\frac{BA}{AC}\)
ta có : \(\Delta DHA~\Delta ABC\Rightarrow\frac{HD}{DA}=\frac{AB}{AC}\) và \(\Delta CHE~\Delta CAB\Rightarrow\frac{CH}{HE}=\frac{AB}{AC}\)
nhâm ba đẳng thức lại ta có :
\(\frac{BD}{DH}.\frac{DH}{DA}.\frac{HE}{CE}=\left(\frac{AB}{AC}\right)^3\) mà DA=HE ( do DAEH là hình chữ nhậy)
nên \(\frac{BD}{CE}=\left(\frac{AB}{AC}\right)^3\)
Gọi K là trung điểm của BD
Xét ΔDBH có
K,I lần lượt là trung điểm của DB,DH
=>KI là đường trung bình của ΔDBH
=>KI//BH
Ta có: KI//BH
AH\(\perp\)BH
Do đó: KI\(\perp\)AH
Xét ΔAKH có
KI,HD là các đường cao
KI cắt HD tại I
Do đó: I là trực tâm
=>AI\(\perp\)HK
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔBDC có
K,H lần lượt là trung điểm của BD,BC
=>KH là đường trung bình
=>KH//DC
Ta có: KH//DC
AI\(\perp\)KH
Do đó: AI\(\perp\)DC
+) Đặt: AB = AC = a
=> BC = a\(\sqrt{2}\)
D là trung điểm của AC -> AD = DC = a/2
=> BD = \(\frac{\sqrt{5}}{2}\)a ( pitago cho tam giác ABD vuông tại A )
+) \(\Delta\)ABD ~ \(\Delta\)ICD ( tự chứng minh )
=> \(\frac{AD}{DI}=\frac{BD}{CD}\Rightarrow\frac{\frac{a}{2}}{DI}=\frac{\frac{\sqrt{5}a}{2}}{\frac{a}{2}}\Rightarrow DI=\frac{a}{2\sqrt{5}}\)
+) \(\Delta\)DIC vuông tại I có IH là đường cao đáy DC
=> \(DI^2=DH.DC\Rightarrow DH=\frac{\frac{a^2}{4.5}}{\frac{a}{2}}=\frac{a}{10}\)=> AH = AD + DH = a/2 + a/10 = 3/5 (1)
\(IH^2=DI^2-DH^2=\frac{a^2}{20}-\frac{a^2}{100}=\frac{a^2}{25}\)=> IH = a/5 (2)
Từ (1) và (2) => AH = 3 IH
Cho cái hình, mới hc lp 8, ko bt lm