K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

\(\frac{5}{2\cdot4}+\frac{5}{4\cdot6}+\frac{5}{6\cdot8}+.....+\frac{5}{48\cdot60}\)

\(=\frac{5}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+.....+\frac{1}{48}-\frac{1}{50}\right)\)

\(=\frac{5}{2}\left(\frac{1}{2}-\frac{1}{50}\right)\)

Tự tính nốt :p

16 tháng 8 2015

A=5/2x(2/2x4+2/4x6+2/6x8+...+2/14x16)

=5/2x(1/2-1/4+1/4-1/6+...+1/14-1/16)

=5/2x(1/2-1/16)

=5/2x(7/16)

=35/32

29 tháng 3 2016

Giải

1/2x4+1/4x6+1/6x8+...+1/96x98+1/98x100

= 1/2 x (1/2 - 1/4 + 1/4 - 1/6 + 1/6-1/8 + ... + 1/98 - 1/100)

= 1/2 x (1/2 - 1/100)

= 1/2 x 98/100

= 98/200

ĐS: 98/200

25 tháng 6 2021

32/2x4+52/4x6+...+992/98x100

=9/8+25/24+...+9801/9800

=1+1/8+1+1/24+...+1+1/9800

=1+1+...+1+1/2.4+1/4.6+...+1/98.100

= 49 + A

với A=1/2.4+1/4.6+...+1/98.100

=1/4(1/1.2+1/2.3+...+1/49.50)

=1/4(1-1/2+1/2-1/3+...+1/49-1/50)

=1/4(1-1/50)

=1/4.49/50

=49/200

ta có:32/2x4+52/4x6+...+992/98x100= 49+A= 49+49/200=9849/200

chúc bạn hok tốt

17 tháng 3 2022

bậy bạ

26 tháng 6 2023

Em cần phần nào nhỉ .

26 tháng 6 2023

A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)

A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)

A = \(\dfrac{105}{106}\)

B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)

B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)

C= \(\dfrac{1}{5}\) \(\times\)\(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))

C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)

C = \(\dfrac{5}{51}\) 

D = \(\dfrac{1}{2}\) +   \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)

D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)\(\dfrac{1}{8.9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)

D = \(\dfrac{8}{9}\)

E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))

E = \(\dfrac{3}{2}\)\(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)\(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)

E = \(\dfrac{147}{200}\)

S=(2+98)*(4+6)+...+100+100+102

100*10+....+100+100*102
=224400

6 tháng 9 2023

\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{40.42}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}.\dfrac{10}{21}\)

\(=\dfrac{5}{21}\)

\(#Wendy.Dang\)

6 tháng 9 2023

\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\)

\(=\dfrac{1}{2}\cdot\left(2\cdot\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{40\cdot42}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{41}{42}\)

\(=\dfrac{41}{84}\)