K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2020

Cách 1:Giả sử \(a=max\left\{a;b;c\right\}\Rightarrow1-3a\le0\)

Ta có:

\(P=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(=ab+bc+ca-3abc\)

\(=a\left(b+c\right)+bc\left(1-3a\right)\)

\(\le\frac{\left(a+b+c\right)^2}{4}+0=\frac{1}{4}\)

Đẳng thức xảy ra tại \(a=b=\frac{1}{2};c=0\)

Cách 2:

Ta sẽ đi chứng minh \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\le\left(a+b+c\right)^3\)

\(\Leftrightarrow\Sigma a^2b+\Sigma ab^2-12abc\le\Sigma a^3+3\Sigma a^2b+3\Sigma ab^2+6abc\)

\(\Leftrightarrow a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2-18abc\)

Theo Schur thì \(a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2+3abc\ge\Sigma a^2b+\Sigma ab^2-18abc\)

\(\Rightarrow P\ge\frac{1}{4}\) tại a=b=1/2 ; c=0 và các hoán vị

Cách 3:

\(\frac{1}{4}-P=\frac{\left(a+b+c\right)^3}{4}-\Sigma a^2b-\Sigma ab^2\)

\(=\frac{1}{4}\left(a^3+b^3+c^3-\Sigma a^2b-\Sigma ab^2+3abc\right)+\frac{3}{4}abc\ge0\) ( đúng theo Schur )

Vậy \(P\le\frac{1}{4}\)

Nhớ không nhầm thì hình như trong này có 1 cách của tth_new nhé ! 

NV
17 tháng 3 2022

\(P\ge3\sqrt[3]{\dfrac{abc\left(a^2+1\right)^2\left(b^2+1\right)^2\left(c^2+1\right)^2}{a^2b^2c^2\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}=3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}}\)

\(P\ge3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(\dfrac{a+b+c}{3}\right)^3}}=9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(a+b+c\right)^3}}\ge9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{2\left(a+b+c\right)^2}}\)

Theo nguyên lý Dirichlet, trong 3 số \(a^2;b^2;c^2\) luôn có ít nhất 2 số cùng phía so với \(\dfrac{4}{9}\)

Không mất tính tổng quát, giả sử đó là \(a^2;b^2\)

\(\Rightarrow\left(a^2-\dfrac{4}{9}\right)\left(b^2-\dfrac{4}{9}\right)\ge0\)

\(\Leftrightarrow a^2b^2+\dfrac{16}{81}\ge\dfrac{4}{9}a^2+\dfrac{4}{9}b^2\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\dfrac{13}{9}a^2+\dfrac{13}{9}b^2+\dfrac{65}{81}\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\left(c^2+1\right)\)

\(=\dfrac{13}{9}\left(a^2+b^2+\dfrac{4}{9}+\dfrac{1}{9}\right)\left(\dfrac{4}{9}+\dfrac{4}{9}+c^2+\dfrac{1}{9}\right)\)

\(\ge\dfrac{13}{9}\left(\dfrac{2}{3}a+\dfrac{2}{3}b+\dfrac{2}{3}c+\dfrac{1}{9}\right)^2\)

\(\Rightarrow P\ge9\sqrt[3]{\dfrac{\dfrac{13}{9}\left(\dfrac{2}{3}\left(a+b+c\right)+\dfrac{1}{9}\right)^2}{2\left(a+b+c\right)^2}}=9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9\left(a+b+c\right)}\right)^2}\)

\(P\ge9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9.2}\right)^2}=\dfrac{13}{2}\)

\(P_{min}=\dfrac{13}{2}\) khi \(a=b=c=\dfrac{2}{3}\)

17 tháng 3 2022

Thầy cho em hỏi cơ sở để ta nghĩ ra dòng

\(\left(a^2-\dfrac{4}{9}\right)\left(b^2-\dfrac{4}{9}\right)\ge0\) này là gì ạ?

Theo cá nhân em thấy cách giải này hay và dễ hiểu, và có lẽ cũng dựa vào điểm rơi nhưng hình như lời giải chưa tự nhiên lắm thì phải ạ. Thầy có cách nào nữa không thầy? Em cảm ơn ạ.

 

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$

$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$

$\Rightarrow C^2\leq 32.4$

$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$

19 tháng 2 2020

*) \(MinA\) :

Ta thấy: a,b,c đều là các số thực không âm.

Do đó : \(A\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=0,c=1\) và các hoán vị.

\(*)MaxA\) :

Giả sử \(a\ge b\ge c\) \(\Rightarrow3a\ge a+b+c=1\) 

\(\Rightarrow1-3a\le0\)

Ta có : \(A=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)

\(=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3abc-3abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(=ab+bc+ca-3abc\)

\(=a\left(b+c\right)+bc\left(1-3a\right)\) \(\le\frac{\left(a+b+c\right)^2}{4}+0\) ( do \(1-3a\le0\) )    \(=\frac{1}{4}\)

hay \(A\le\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2},c=0\) và các hoán vị.

\(\)

10 tháng 6 2017

ta có: a,b,c>0 mà a+b+c=1 \(\Rightarrow\left(1-a\right)\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a\left(a-b\right)^2\le\left(a-b\right)^2\)

tương tự và cộng theo vế: \(VT\le6\left(ab+bc+ca\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(=2\left(a+b+c\right)^2=2\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

10 tháng 6 2017

Câu hỏi của nguyen thu phuong - Toán lớp 8 - Học toán với OnlineMath

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

25 tháng 3 2018

thi hsg co cao khong

25 tháng 3 2018

dang no giong bai bdt vap LHP chuyen nam 2017-2018

20 tháng 7 2017

thỏa cái j sửa đi

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

15 tháng 8 2020

\(K\le\Sigma\sqrt{12a+\left(b+c\right)^2}=\Sigma\sqrt{12a+\left(3-a\right)^2}=\Sigma\sqrt{\left(a+3\right)^2}=12\)

dấu "=" xảy ra khi \(a=b=0;c=3\) và các hoán vị