Cho \(a,b,c>0\)sao cho \(\frac{4}{4+a}+\frac{7}{7+b}\le\frac{c}{c+9}\). Tìm giá trị nhỏ nhất của \(S=abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
a) ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)
tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)
=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)
mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)
cộng từng vế ta có \(S\ge9\)
dấu = xảy ra <=> a=b=c=1/2
câu 2 tương tự
chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin
Dùng bđt AM - GM cho 7 số; 2 số và 3 số không âm, ta được:
\(a^3c^2+a^3c^2+a^3c^2+b^3a^2+b^3a^2+1+1\ge7a\)(1)
\(b^3a^2+b^3a^2+b^3a^2+c^3b^2+c^3b^2+1+1\ge7b\)(2)
\(c^3b^2+c^3b^2+c^3b^2+a^3c^2+a^3c^2+1+1\ge7c\)(3)
\(\frac{a+b+c}{2}+\frac{9}{2\left(a+b+c\right)}\ge3\)
\(a+b+c\ge3\)
Từ (1); (2); (3) suy ra \(a^3c^2+b^3a^2+c^3b^2\ge\frac{7\left(a+b+c\right)}{5}-\frac{6}{5}\)
\(P=\text{Σ}_{cyc}\frac{a}{b^2}+\frac{9}{2\left(a+b+c\right)}=\text{Σ}_{cyc}a^3c^2+\frac{9}{2\left(a+b+c\right)}\)
\(\ge\frac{7\left(a+b+c\right)}{5}+\frac{9}{2\left(a+b+c\right)}-\frac{6}{5}\)
\(=\frac{a+b+c}{2}+\frac{9}{2\left(a+b+c\right)}+\frac{9\left(a+b+c\right)}{10}-\frac{6}{5}\)
\(\ge3+\frac{9}{10}.3-\frac{6}{5}=\frac{9}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
\(b^4+c^4\ge bc\left(b^2+c^2\right)\)vì \(\left(b-c\right)^2\left(b^2+bc+c^2\right)\ge0\)
\(\Rightarrow T\le\frac{a}{\frac{b^2+c^2}{a}+a}+\frac{b}{\frac{a^2+c^2}{b}+b}+\frac{c}{\frac{a^2+b^2}{c}+c}=1\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:
\(P=\frac{a^2}{ab+2ca}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge1\)
Cộng thêm giả thiết abc=1, suy ra dấu "=" xảy ra khi \(a=b=c=1\)
-ô9lkhmt n pobgolnb
\(abc\ge\frac{\left(252^3\left(63a+36b+28c+756\right)-252\right)\Sigma\left(28c+252\right)\left(63a-36b\right)^2}{63504\Pi\left(63a+252\right)\left(63a+36b+28c+756\right)}\)
\(+\frac{1}{63504}\Pi\left(63a+252\right)\left(\frac{63a+36b+28c-1512}{63a+36b+28c+756}\right)+\frac{508032.252}{63504}\ge2016\)
dau "=" xay ra khi \(\left(a;b;c\right)=\left(8;14;18\right)\)