giải các phương trình sau
\((x-ab/a+b)+(x-bc/b+c)+(x-ca/c+a)=a+b+c \)
với a,b,c>o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) ĐKXĐ: \(a\ne-b;a\ne-c;b\ne-c\)
\(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}=a+b+c\)
\(\Leftrightarrow\left(\dfrac{x-ab}{a+b}-c\right)+\left(\dfrac{x-ac}{a+c}-b\right)+\left(\dfrac{x-bc}{b+c}-a\right)=0\)
\(\Leftrightarrow\dfrac{x-ab-ac-bc}{a+b}+\dfrac{x-ac-ab-bc}{a+c}+\dfrac{x-bc-ab-ac}{b+c}=0\)
\(\Leftrightarrow\left(x-ab-ac-bc\right)\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=0\)
Vì \(a,b,c>0\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}>0\)
\(\Leftrightarrow x-ab-ac-bc=0\)
\(\Leftrightarrow x=ab+ac+bc\)
Giải và biện luận các phương trình sau
a) (x-ab)/(a+b) + (x-ac)/(a+c) + (x-bc)/(b+c) = a+b+c
b) (x-a)/bc + (x-b)/ac + (x-c)/ab = 2(1/a + 1/b + 1/c)
Phương trình x2 + (a + b + c)x + (ab + bc + ca) = 0
Có Δ = (a + b + c)2 − 4(ab + bc + ca)
= a2 + b2 + c2 – 2ab – 2bc – 2ac
= (a – b)2 – c2 + (b – c)2 – a2 + (a – c)2 – b2
= (a – b – c)(a + c – b) + (b – c – a)
(a + b – c) + (a – c – b)(a – c + b)
Mà a, b, c là ba cạnh của một tam giác nên
a − b − c < 0 b − c − a < 0 a − c − b < 0 ; a + c − b > 0 a + b − c > 0
Nên Δ < 0 với mọi a, b, c
Hay phương trình luôn vô nghiệm với mọi a, b, c
Đáp án cần chọn là: D
Lời giải:
PT $\Leftrightarrow 3x-\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\right)=a+b+c$
$\Leftrightarrow 3x=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}+a+b+c$
$=(ab+bc+ac)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})$
$\Leftrightarrow x=\frac{1}{3}(ab+bc+ac)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})$