Cho ΔABC ( AB = AC ), lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD =AE. Gọi K là giao điểm của BE và CD.
a) CMR: BE = CD. b) ΔKBD = ΔKCE.
c) AK là tia phân giác của góc A. d) Kéo dài AK cắt BC tại I. CMR: AI ⊥ BC.
GIÚP MIK NHANH VỚI Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AEB\) và \(\Delta ADC:\)
AE = AD (gt).
\(\widehat{A}chung.\)
AB = AC \((\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AEB=\Delta ADC\left(c-g-c\right).\)
\(\Rightarrow BE=CD.\)
b) \(\Rightarrow\Delta AEB=\Delta ADC\left(cmt\right).\)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}.\)
Ta có: \(\widehat{BDK}=180^o-\widehat{ADC};\widehat{CEK}=180^o-\widehat{AEB}.\)
Mà \(\widehat{AEB}=\widehat{ADC}\left(\Delta AEB=\Delta ADC\right).\)
\(\Rightarrow\widehat{BDK}=\widehat{CEK}.\)
Xét \(\Delta KBD\) và \(\Delta KCE:\)
\(\widehat{DBK}=\widehat{ECK}\left(\widehat{ABE}=\widehat{ACD}.\right).\)
BD = CE (cmt).
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right).\)
\(\Rightarrow\Delta KBD=\Delta KCE\left(g-c-g\right).\)
c) Xét \(\Delta AKB\) và \(\Delta AKC:\)
\(AKchung.\)
AB = AC (\(\Delta ABC\) cân tại A).
KB = KC \(\left(\Delta KBD=\Delta KCE\right).\)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right).\\ \Rightarrow\widehat{KAB}=\widehat{KAC}.\)
\(\Rightarrow\) AK là phân giác của \(\widehat{A}.\)
Xét \(\Delta ABC\) cân tại A:
AK là phân giác của \(\widehat{A}\left(cmt\right).\)
\(\Rightarrow\) AK là đường cao.
\(\Rightarrow AK\perp BC.\)
b) Ta có: AD+DB=AB(D nằm giữa A và B)
AE+EC=AC(E nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AD=AE(gt)
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC(cmt)
\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔDBC=ΔECB(c-g-c)
Suy ra: \(\widehat{BDC}=\widehat{CEB}\)(hai góc tương ứng)
hay \(\widehat{KDB}=\widehat{KEC}\)
Ta có: ΔABE=ΔACD(cmt)
nên \(\widehat{ABE}=\widehat{ACD}\)(hai góc tương ứng)
hay \(\widehat{DBK}=\widehat{ECK}\)
Xét ΔDBK và ΔECK có
\(\widehat{KDB}=\widehat{KEC}\)(cmt)
DB=EC(cmt)
\(\widehat{DBK}=\widehat{ECK}\)(cmt)
Do đó: ΔKBD=ΔKCE(g-c-g)
a) Sửa đề: BE=DC
Xét ΔABE và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
AE=AD(gt)
Do đó: ΔABE=ΔACD(c-g-c)
Suy ra: BE=CD(hai cạnh tương ứng)
a, ta có:
+/ \(\Delta\)ABC cân tại A=> \(\widehat{ABC}=\widehat{ACB}\)và AB=AC
+/AB=AC(gt)
AD+BD=AE+CE
Mà AD=AE(gt)
SUY RA:BD=CE
Xét \(\Delta BCD\)và \(\Delta CEB\)có
BC chung
\(\widehat{ABC}=\widehat{ACB}\)(cmt)
BD=CE(cmt)
Suy ra: \(\Delta BCD\)= \(\Delta CEB\)
=>BE=CD(đpcm)
tự vẽ hình
a) Xét tam giác ABE và tam giác ACD, ta có:
Góc BAE= góc DAC(hay góc A là góc chung)
AD=AC(gt)
AD=AE(gt)
Vậy tam giác ABE = tam giác ACD (c-g-c)
=> BE=CD ( cặp cạnh t/ứng)
=> góc ABE=góc ACD (cặp góc t/ứng) hay góc ABK=góc ACK
b) Vì AB=AC, AD=AE => BD=CE( vì AD+BD=AB;AE+EC=AC)
tam giác DBK có: góc D+góc B+góc K=180 độ
tam giác KCE có: góc K+góc C+góc E=180 độ
mà Góc B= góc C(cmt) và Góc K1=Góc K1(đối đỉnh)---bạn tự kí hiệu nha :")
=> góc D=góc E
Xét tam giác BKD và tam giác KCE, ta có:
Góc BDK=góc KEC(cmt)
Góc DBK=góc ECK(cmt)
DB=CE(cmt)
Vậy tam giác BKD = tam giác KCE(g-c-g)
=> DK=EK(cặp cạnh tướng ứng)
c) Xét tam giác ADK và tam giác AEK, ta có:
AD=AE(gt)
DK=KE(cmt)
AK là cạnh chung
Vậy tam giác ADK= tam giác AEK(c-c-c)
=> góc DAK=góc EAK(cặp góc t/ứng) hay góc BAK=góc CAK
=> AK là p/g của góc BAC
d) Góc BAK=góc CAK hay góc BAI=góc CAI
Xét tam giác BAI và tam giác CAI, ta có:
AB=AC(gt)
AI là cạnh chung
Góc BAI=góc CAI (cmt)
Vậy tam giác BAI = tam giác CAI(c-g-c)
=>Góc AIB=góc AIC(cặp góc t/ứng)
mà góc AIB+góc AIC=180 độ => AIB=AIC=90 độ
=> AI vuông góc với BC
a: Xét ΔABE và ΔACD có
AB=AC
\(\stackrel\frown{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Xét ΔKBD và ΔKCE có
\(\widehat{KBD}=\widehat{KCE}\)
BD=CE
\(\widehat{KDB}=\widehat{KEC}\)
Do đó:ΔKBD=ΔKCE
a) Xét ΔABE và ΔACD ta có:
AB = AC (GT)
\(\widehat{BAC}\): góc chung
AE = AD (GT)
=> ΔABE = ΔACD (c - g - c)
=> BE = CD (2 cạnh tương ứng)
b) Có: ΔABE = ΔACD (câu a)
\(\Rightarrow\widehat{AEB}=\widehat{ADC}\) (2 góc tương ứng)
Có: \(\left\{{}\begin{matrix}\widehat{AEB}+\widehat{KEC}=180^0\\\widehat{ADC}+\widehat{KDB}=180^0\end{matrix}\right.\) (kề bù)
Mà: \(\widehat{AEB}=\widehat{ADC}\left(cmt\right)\)
\(\Rightarrow\widehat{KEC}=\widehat{KDB}\)
Có: \(\left\{{}\begin{matrix}AD+BD=AB\\AE+EC=AC\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}AD=AE\left(GT\right)\\AB=AC\left(GT\right)\end{matrix}\right.\)
=> BD = EC
Có: ΔABE = ΔACD (câu a)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng)
Hay: \(\widehat{DBK}=\widehat{ECK}\)
Xét ΔDBK và ΔECK ta có:
\(\widehat{DBK}=\widehat{ECK}\left(cmt\right)\)
BD = EC (cmt)
\(\widehat{KEC}=\widehat{KDB}\left(cmt\right)\)
=> ΔDBK = ΔECK (g - c - g)
c) Có: ΔDBK = ΔECK (câu b)
=> DK = EK (2 cạnh tương ứng)
Xét ΔADK và ΔAEK ta có:
DK = EK (cmt)
AD = AE (GT)
AK: cạnh chung
=> ΔADK = ΔAEK (c - c - c)
\(\Rightarrow\widehat{AKD}=\widehat{AKE}\) (2 góc tương ứng)
=> AK là phân giác của góc DAE
Hay: AK là phân giác của góc A
d) Có: AK là phân giác của góc A (cmt)
\(\Rightarrow\widehat{BAK}=\widehat{CAK}\) (2 góc tương ứng)
Hay: \(\widehat{BAI}=\widehat{CAI}\)
Xét ΔABI và ΔACI ta có:
AB = AC (GT)
\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)
AI: cạnh chung
=> ΔABI = ΔACI (c - g - c)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)
Mà 2 góc này lại là 2 góc kề bù nên:
\(\Rightarrow\widehat{AIB}=\widehat{AIC}=180^0:2=90^0\)
=> AI ⊥ BC.
Nguyễn Trúc Giang Bạn ưi :v tại s chỗ có AK là pg góc A bạn lại suy ra 2 góc đó t/ứ ạ ? Bạn nên sửa chỗ đóa đi ạ :>