K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

`x^2 + 2(m-1)x + m^2 = 0`

Thay `m=0` vào pt và giải ta được :

`x^2 - 6x + 16 = 0`

Vì `x^2 - 6x + 16 > 0` với mọi `x`

`=>` vô nghiệm 

Vậy `S = RR`

Thay `m=-4` vào pt và giải ta được :

`x^2 + 10x + 16 = 0`

`\Delta = 10^2 - 4*1*16 = 36 > 0`

`=> \sqrt{\Delta} = 6`

`=>` Phương trình có 2 nghiệm phân biệt :

`x_1 = (-10+6)/(2*1) = -2`

`x_2 = (-10-6)/(2*1) = -8`

Vậy `S = {-2,-8}`

 

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

20 tháng 5 2016

a/ Thay m = 1 vào pt ta được: x2 + 2 = 0 => x2 = -2 => pt vô nghiệm

b/ Theo Vi-ét ta được: \(\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m+1\end{cases}\)

    \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(2m-2\right)^2-2\left(m+1\right)}{m+1}=4\) \(\Leftrightarrow\frac{4m^2-8m+4-2m-2}{m+1}=4\) \(\Leftrightarrow4m^2-10m+2=4m+4\) \(\Leftrightarrow4m^2-14m-2=0\)

Giải denta ra ta được 2 nghiệm: \(\begin{cases}x_1=\frac{7+\sqrt{57}}{4}\\x_2=\frac{7-\sqrt{57}}{4}\end{cases}\)

20 tháng 5 2016

Khi m=1 ta có : \(x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)

Pt 2 nghiệm x1 ; x2 thỏa mãn : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1+x_2}=4\Leftrightarrow\frac{x_1^2+x_2^2-2x_1x_2+2x_1x_2}{x_1+x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1+x_2}=4\) (1)

Theo viet ta có: \(x_1x_2=\frac{c}{a}=\left(m+1\right)\)\(x_1+x_2=\frac{-b}{a}=2\left(m+1\right)\)

Thay vài (1) ta có: \(\frac{\left[2\left(m+1\right)\right]^2-2\left(m-1\right)}{2\left(m+1\right)}=4\) \(\Leftrightarrow4\left(m^2+2m+1\right)-2m+1=8\left(m+1\right)\Leftrightarrow4m^2+6m+5-8m-8=0\) \(\Leftrightarrow4m^2-2m-3=0\Leftrightarrow\left[\begin{array}{nghiempt}m=\frac{1+\sqrt{13}}{4}\\m=\frac{1-\sqrt{13}}{4}\end{array}\right.\)

25 tháng 12 2021

\(a,m=4\Leftrightarrow x^2-10x=0\Leftrightarrow x\left(x-10\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\\ b,\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\)

Vậy PT luôn có 2 nghiệm phân biệt với mọi m

3 tháng 2 2021

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiemj (x;y) = (3;-11)

3 tháng 2 2021

nghiệm là (3;-1) nhé

a) Thay m=1 vào phương trình, ta được:

\(x^4-4x^2-5=0\)

\(\Leftrightarrow x^4+x^2-5x^2-5=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-5\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-5\right)=0\)

mà \(x^2+1>0\forall x\)

nên \(x^2-5=0\)

\(\Leftrightarrow x^2=5\)

hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

Vậy: Khi m=1 thì tập nghiệm của phương trình là: \(S=\left\{\sqrt{5};-\sqrt{5}\right\}\)

25 tháng 8 2018

Giúp vs đi mọi người...😣😣

14 tháng 11 2021

\(a,m=1\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

\(b,\) PT có 2 nghiệm pb \(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2+2\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2-8>0\\ \Leftrightarrow8m-4>0\Leftrightarrow m>\dfrac{1}{2}\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow4\left(m+1\right)^2-2\left(m^2+2\right)=10\\ \Leftrightarrow4m^2+8m+4-2m^2-4=10\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow m^2+4m-5=0\\ \Leftrightarrow\left(m+5\right)\left(m-1\right)=0\Leftrightarrow m=1\left(m>\dfrac{1}{2}\right)\)

Vậy m=1 thỏa mãn đề bài