\(\sqrt{7x+1}\) - \(\sqrt{3x-8}\) ≤ \(\sqrt{2x+7}\)
giải bpt đưa về bậc 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+9}+\sqrt{2x+4}>5\) ( ĐK : \(x\ge-2\) )
\(\Leftrightarrow3x+13+2\sqrt{\left(x+9\right)\left(2x+4\right)}>25\)
\(\Leftrightarrow2\sqrt{2x^2+22x+36}>12-3x\)
Với \(x\ge4\) BPT luôn đúng
Với \(x< 4\)
\(\Leftrightarrow8x^2+88x+144>9x^2-72x+144\)
\(\Leftrightarrow x^2-160x< 0\)
\(\Leftrightarrow0< x< 160\)
Kết hợp với các TH ta được \(x>0\)
Vậy \(S=\left(0;+\infty\right)\)
ĐKXĐ: \(-2\le x\le\frac{5}{2}\)
\(\Leftrightarrow\sqrt{x+2}< \sqrt{3-x}+\sqrt{5-2x}\)
\(\Leftrightarrow x+2< -3x+8+2\sqrt{2x^2-11x+15}\)
\(\Leftrightarrow2x-3< \sqrt{2x^2-11x+15}\)
- Với \(-2\le x< \frac{3}{2}\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge\frac{3}{2}\) hai vế ko âm, bình phương:
\(4x^2-12x+9< 2x^2-11x+15\)
\(\Leftrightarrow2x^2-x-6< 0\Rightarrow-\frac{3}{2}< x< 2\) \(\Rightarrow\frac{3}{2}\le x< 2\)
Kết hợp lại ta được nghiệm của BPT: \(-2\le x< 2\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
ĐKXĐ: \(\frac{2}{3}\le x\le5\)
\(\Leftrightarrow\sqrt{2x+7}\ge\sqrt{5-x}+\sqrt{3x-2}\)
\(\Leftrightarrow2x+7\ge2x+3+2\sqrt{-3x^2+17x-10}\)
\(\Leftrightarrow\sqrt{-3x^2+17x-10}\le2\)
\(\Leftrightarrow-3x^2+17x-10\le4\)
\(\Leftrightarrow3x^2-17x+14\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge\frac{14}{3}\end{matrix}\right.\)
Kết hợp ĐKXĐ: \(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}\le x\le1\\\frac{14}{3}\le x\le5\end{matrix}\right.\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)
đặt\(x^2+x+1=t\left(t>0\right)\)
\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)
bình phương 2 vế pt trở thành:
\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)
\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m
vậy pt vô nghiệm
a/ ĐKXĐ: ...
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)
\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)
\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))
\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)
\(\Leftrightarrow11a^2+6a-25=0\)
Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó
b/
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)
\(\Leftrightarrow\sqrt{a^2+3a}=2\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
ĐKXĐ: \(x\ge\frac{8}{3}\)
\(\Leftrightarrow\sqrt{7x+1}\le\sqrt{3x-8}+\sqrt{2x+7}\)
\(\Leftrightarrow7x+1\le5x-1+2\sqrt{6x^2+5x-56}\)
\(\Leftrightarrow x+1\le\sqrt{6x^2+5x-56}\)
\(\Leftrightarrow x^2+2x+1\le6x^2+5x-56\)
\(\Leftrightarrow5x^2+3x-57\ge0\)
Nghiệm xấu quá \(x\ge\frac{-3+\sqrt{1149}}{10}\)