K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2020

1. Thay \(x=1\) vào biểu thức \(4P\left(x\right)=P\left(2x+1\right)+2x+2\)

\(\Rightarrow4P\left(1\right)=P\left(3\right)+4\Rightarrow P\left(3\right)=4P\left(1\right)-4=20\)

Thay \(x=0\) vào:

\(\Rightarrow4P\left(0\right)=P\left(1\right)+2\Rightarrow P\left(0\right)=\frac{P\left(1\right)+2}{4}=2\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(0\right)=2\\P\left(1\right)=6\\P\left(3\right)=20\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=2\\a+b+c=6\\9a+3b+c=20\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\\c=2\end{matrix}\right.\)

Câu 2:

Gọi 2 nghiệm của đa thức là \(n\)\(n+1\) với n nguyên

\(\Rightarrow P\left(x\right)=\left(x-n\right)\left(x-n-1\right)=x^2-\left(2n+1\right)x+n\left(n+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-\left(2n+1\right)=9\\n\left(n+1\right)=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n=-5\\n\left(n+1\right)=b\end{matrix}\right.\) \(\Rightarrow b=20\)

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

21 tháng 4 2019

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....

1 tháng 10 2019

â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12

Để là phép chia hết thì số dư =0

Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12

b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x

số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36

c) Tương tự (x2-1)4x+(a+4)x+b

số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Nhớ k đúng cho mik

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

22 tháng 7 2020

f(-1)=1-a+b; f(0)=b; f(1)=1+a+b

theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)

cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)

từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0

vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)

22 tháng 7 2020

+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)

+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)

\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)

+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)

+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)

+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

Vậy a=0, b=1/2

P/s: Bài này mình không chắc chắn lắm nhé!

6 tháng 3 2018

Bài 1 : k bt làm

Bài 2 :

Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x

+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)

\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)

\(\Leftrightarrow0=7.P\left(2\right)\)

\(\Leftrightarrow P\left(2\right)=0\)

\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)

+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)

\(\Leftrightarrow P\left(-1\right)=0\)

\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm

6 tháng 3 2018

nghiệm của đa thức xác định đa thức đó bằng 0

0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-