K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

\(\Delta'_1=a^2-b;\Delta'_2=b^2-a\)

\(\Delta'_1+\Delta'_2=a^2-b+b^2-a=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(a+b-2\right)\)

\(=\left(a-1\right)^2+\left(b-1\right)^2+\left(a+b-2\right)\ge0\)

Vì \(\left(a-1\right)^2\ge0;\left(b-1\right)^2\ge0;a+b-2\ge0\left(gt\right)\)

Do đó trong hai số \(\Delta'_1;\Delta'_2\) có ít nhất 1 số ko âm

Vậy ít nhất 1 trong 2 pt đã cho có nghiệm.

22 tháng 3 2017

Phương trình bậc 3:  x3 - 2x - a = 0 luôn luôn có ít nhất 1 nghiệm mà.

29 tháng 8 2020

x2+ax+1=0

Δ1=a²−4

x2+bx+1=0

Δ2=b²−4

Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2

→ Hoặc Δ1=a²−4≥0

→ Hoặc Δ2=b²≥0

NV
30 tháng 7 2021

\(\Delta_1'=b^2-ac\) ; \(\Delta_2'=c^2-ab\) ; \(\Delta_3'=a^2-bc\)

\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)

\(=\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm

\(\Rightarrow\) Ít nhất 1 trong 3 pt nói trên có nghiệm