K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

gọi Ex là tia đối của tiếp tuyến EA

Ta có : \(\widehat{xED}=\frac{1}{2}sđ\widebat{ED}\)\(\widehat{EFD}=\frac{1}{2}sđ\widebat{ED}\)\(\Rightarrow\widehat{xED}=\widehat{EFD}\)( 1 )

Dễ thấy tứ giác AFOE nội tiếp

I là trung điểm của BC nên OI \(\perp\)BC \(\Rightarrow\)tứ giác AIOE nội tiếp

\(\Rightarrow\)5 điểm A,F,I,O,E cùng thuộc 1 đường tròn

\(\Rightarrow\)tứ giác AFIE nội tiếp \(\Rightarrow\)\(\widehat{EAI}=\widehat{EFI}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\widehat{xED}=\widehat{EAI}\Rightarrow ED//AC\)

Gọi N là giao điểm của AO và EF

Dễ chứng minh AN \(\perp\)EF

\(\DeltaẠNH~\Delta AIO\left(g.g\right)\Rightarrow\frac{AN}{AH}=\frac{AI}{AO}\Rightarrow AI.AH=AN.AO\)( 3 )

Ta có : \(AE^2=AN.AO\)( 4 )

Xét \(\Delta AEB\)và \(\Delta ACE\)có :

\(\widehat{EAC}\)( chung ) ; \(\widehat{AEB}=\widehat{ACE}=\frac{1}{2}sđ\widebat{EB}\)

\(\Rightarrow\Delta AEB~\Delta ACE\left(g.g\right)\)

\(\Rightarrow\frac{AE}{AB}=\frac{AC}{AE}\Rightarrow AE^2=AB.AC\)( 5 )

Từ ( 3 ) , ( 4 ) và ( 5 ) suy ra : AH.AI = AB.AC

14 tháng 4 2020

đề bạn cho thiếu nhé. đoạn cuối AH. AI = AB . AC với H là giao điểm của AC và EF

27 tháng 8 2016

a) Vì tam giác AFB đồng dạng với ACF(g.g) nên: 
AF/AC=AB/AF hay AF^2=AB.AC => AF=căn(AB.AC) ko đổi 
Capture.PNG

Mà AE=AF (T/cTtuyen) nên E, F cùng thuộc đường tròn bán kính căn(AB.AC) 
b)Ta có: OI vuông góc với BC (T/ đường kính và dây) 
Các điểm E, F, I cùng nhìn OA dưới 1 góc ko đổi 90 độ nên O,I,F,A,E cùng thuộc đường tròn đường kính OA 
Ta có góc FIA=FOA(Cùng chắn cung FA trong đường tròn (OIFAE) 
Mà góc FKE=FOA( Cùng bằng \(\frac{1}{2}\) góc FOE) 
Suy ra góc FIA=FKE, nhưng hai góc này lại ở vị trí SLT nên KE//AB 

31 tháng 8 2016

bạn vẽ cái đó bằng phần mềm j vậy, chỉ mik nha

6 tháng 10 2019

A E X B C K O I D F

Dễ chứng minh \(\Delta AEB\Delta ACE\left(g.g\right)\)

b ) Cm tứ giác \(OEAI\) và \(AEOF\) nt

Dễ thấy : \(\widehat{AEO}=\widehat{AIO}=90^o\)

\(\Rightarrow\) tứ giác OEAI nt đường tròn đường kính OA (1)

Lại có : \(\widehat{AEO}=\widehat{AFO}=90^o\)

\(\Rightarrow\) tứ giác AEOF nt đường tròn đường kính OA (2)

Từ (1) và (2) \(\Rightarrow\) đpcm

+ ) CM : ED//AC

Có : \(\widehat{xED}=\widehat{EFD}\left(=\frac{1}{2}sđcungED\right)\)

Mà 5 diểm A , E, O , I , F cùng thuộc 1 đường tròn 

\(\Rightarrow\widehat{EFD}=\widehat{EAI}\left(=\frac{1}{2}sđEI\right)\)

\(\Rightarrow\widehat{xED}=\widehat{EAI}\)

\(\Rightarrow\) DE//AC

Chúc bạn học tốt !!!

17 tháng 3 2016

2 tam giác HIE và HFA đồng dạng do có góc tại đỉnh H bằng nhau và góc HIE = góc FA (cùng chắn cung A của Q) => HI / HF = HE / HA => HI*HA = HE*HF ♦ 
2 ∆ HEB và HCF đồng dạng do có góc tại đỉnh H bằng nhau và góc HEB = góc HCF (cùng chắn cung BF của O) => HE / HC = HB / HF => HB*HC = HE*HF ♥ 
(Nếu bạn đã học phương tích của điểm đối với đường tròn thì có ngay ♦ và ♥ không cần cm vì ♦ chính là pt của H đối với Q còn ♥ là pt của H đối với O) 
♦, ♥ => HI*HA = HB*HC => HI*(AI - HI) = (x - HI)(x + HI) => HI*AI = x² 
=> HI = x² / AI = hằng số (A, I cố định nên AI không đổi) 
=> H cố định. 
Dễ thấy OIHK nội tiếp đường tròn (P) => đường tròn ngoại tiếp ∆ IOK chính là (P). Tâm đường tròn (P) dĩ nhiên nằm trên trung trực k của HI mà trung trực này cố định do H, I cố định. Vậy tâm đường tròn ngoại tiếp tam giác OIK luôn thuộc k cố định

17 tháng 3 2016

có người làm rồi kìa

2 tháng 8 2017

Gọi I là giao điểm của MN và AC.

Ta có: \(\widehat{IHO}=\widehat{OEI}=90°\)

\(\Rightarrow\)Tứ giác EIHO nội tiếp đường tròn.

\(\Rightarrow\)Tâm của đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.(*)

Ta có ∆AIH \(\approx\)∆AOE 

\(\Rightarrow\)AH.AO = AE.AI (1)

Ta có: ∆AMB \(\approx\)AOM

\(\Rightarrow\)AM2 = AH.AO (2)

Ta lại có: ∆ABM \(\approx\)∆AMC

\(\Rightarrow\)AM2 = AB.AC (3)

Từ (1), (2), (3) \(\Rightarrow\)AE.AI = AB.AC

Vì A,B,C,E cố định nên I cố định (**)

Từ (*), (**) suy ta tâm đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.

PS: không chứng minh được nó nằm trên đường tròn nha b. Hình tự vẽ.

3 tháng 8 2017

bạn cho mình hỏi tại sao tam giác ABM đồng dạng với tam giác AMC vậy?. Mình ko hiểu chỗ đó