Tính nhanh :
8^3 . 32^5 / 64^7
các bạn giúp mk với ! các bạn viết đề bài dưới dạng phân số cho dễ nhìn nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-5}{6}=\dfrac{-5\times4}{6\times4}=\dfrac{-20}{24}\)
\(\dfrac{3}{-8}=\dfrac{3\times\left(-3\right)}{-8\times\left(-3\right)}=\dfrac{-9}{24}\)
\(2=\dfrac{48}{24}\)
\(\dfrac{-25}{100}=\dfrac{-1}{4}=\dfrac{-1\times6}{4\times6}=\dfrac{-6}{24}\)
\(\dfrac{72}{108}=\dfrac{2}{3}=\dfrac{2\times8}{3\times8}=\dfrac{16}{24}\)
Ta có :
\(0,0\left(8\right)=\frac{4}{45}\)
\(0,1\left(2\right)=\frac{11}{90}\)
\(0,1\left(23\right)=\frac{61}{495}\)
Ta có:
\(0,0\left(8\right)=0,0\left(1\right).8=\frac{0,\left(1\right)}{10}.8=\frac{1}{90}.8=\frac{8}{90}\)
Tương tự hết!
0,0(8) = \(\frac{1}{10}\).0,(8) = \(\frac{1}{10}.\frac{8}{9}=\frac{4}{45}\)
a)27^6:9^3=(3^3)^6:(3^2)^3=3^18:3^6=3^12
b)4^20:2^15=(2^2)^20:2^15=2^40:2^15=2^25
a) 27^6 : 9^3
= ( 3^3)^6 : ( 3^2)^3
= 3^18 : 3^6
= 3^12
b) 4^20 : 2^15
= ( 2^2)^20 : 2^15
= 2^40 : 2^15
= 2^25
d) 64^4 x 16^5 : 4^20
= (4^3)^4 x (4^2)^5 : 4^20
= 4^12 x 4^10 : 4^20
= 4^22 : 4^20
= 4^2
x + 3 + 9 chia hết x + 3
9 chia hết x + 3
x + 3 thuộc Ư ( 9 )
mà Ư (9) = ( 1,3,9 )
hay x + 3 thuộc ( 1,3,9 )
ta có bảng
x + 3 1 3 9
x -2 0 6
ĐG Loại TM TM
Vậy x thuộc ( 0 , 6 )
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\)
A\(\times\) 2 = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 1 - \(\dfrac{1}{128}\)
A\(\times\)(2-1) = \(\dfrac{128-1}{128}\)
A = \(\dfrac{127}{128}\)
Gọi \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là B
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2\cdot B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(2\cdot B-B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(B=1+\left(\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+.....+\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(B=1+0-\dfrac{1}{128}\)
\(B=1-\dfrac{1}{128}\)
\(B=\dfrac{128}{128}-\dfrac{1}{128}\)
\(B=\dfrac{127}{128}\)
\(\frac{8^3\cdot32^5}{64^7}=\frac{\left(2^3\right)^3\cdot\left(2^5\right)^5}{\left(2^6\right)^7}=\frac{2^9\cdot2^{25}}{2^{42}}\)\(=\frac{2^{34}}{2^{42}}=\frac{1}{2^8}=\frac{1}{256}\)