K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

\(\Leftrightarrow x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(VT\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=1;\sqrt{y-1}=1;\sqrt{z-2}=1\)
\(\Leftrightarrow x=1;y=2;z=3\)
\(\Rightarrow x^2_0+y^2_0+z^2_0=1^2+2^2+3^2=14\)

NV
14 tháng 12 2020

\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)

\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)

Ta có:

\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)

\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)

\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)

Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Theo em ý kiến của bạn Nam là đúng.

Ta có: Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne g\left( {{x_0}} \right)\)

Do đó \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) + \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne f\left( {{x_0}} \right) + g\left( {{x_0}} \right)\)

Vì vậy hàm số không liên tục tại x0.

a: \(f'\left(x_0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{c-c}{x-x0}=0\)

b: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{x-x0}{x-x0}=1\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Theo lí thuyết ta chọn đáp án D.

20 tháng 5 2020

\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)

\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)

6 tháng 12 2017

a) Mỗi điểm M xác định một cặp số \(\left(x_0;y_0\right)\). Ngược lại, mỗi cặp số \(\left(x_0;y_0\right)\) xác định một điểm M.

b) Cặp số \(\left(x_0;y_0\right)\) gọi là tọa độ của điểm M, \(x_0\) là hoang độ và \(y_0\)là tung độ của điểm M.

c) Điểm M có tọa độ \(\left(x_0;y_0\right)\) được kí hiệu là M\(\left(x_0;y_0\right)\).

7 tháng 12 2017

a,mỗi điểm M xác định điểm(x0;y0).Ngược lại ,mỗi cặp(x0;y0)xác định điểm M

b,Cặp số(x0;y0) là tọa độ của điểm M;x0 là hoành độ và y0 là tung độ của điểm M

c,Điểm M có tọa độ (x0;y0) được kí hiệu là M(x0;y0)

22 tháng 2 2017

Lớp 7 sao lại để ở đây:

f(x0)=!1-3x0!

f(-x0)=!1+3x0!

f(x0)=f(-x0)=> !1-3x0!=!1+3x0! (1) khó viết cho x0=a đi

\(a< -\frac{1}{3}\Leftrightarrow1-3a=-1-3a\) => vô nghiệm a

\(-\frac{1}{3}\le a\le\frac{1}{3}\Rightarrow1-3a=1+3a\Rightarrow a=0\)

\(a\ge\frac{1}{3}\Rightarrow3a-1=1+3a\\ \)=> vô nghiêmh

Kết luận: \(x_0=0\)

22 tháng 2 2017

Toán lớp 7 nha các bn, giúp mk vs, ko phải toán lớp 10 đâu