[x+1/2]2=4
Giúp mik nhanhhhh zới
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left|3x-2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=4\\3x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: Ta có: \(\left|5x-3\right|=\left|x-7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x-7\\5x-3=7-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-4\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
\(\dfrac{x+1}{x-2}=\dfrac{1}{x^2-4}ĐK:x\ne\pm2\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=1\Leftrightarrow x^2+3x+2=1\)
\(\Leftrightarrow x^2+3x+1=0\)
=> Phương trình vô nghiệm
thật ra bài này vẫn có nghiệm nhưng nghiệm là số vô tỉ
\(\Leftrightarrow x^2+3x+1=0\Leftrightarrow x^2+3x+\dfrac{9}{4}-\dfrac{5}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2-\left(\dfrac{\sqrt{5}}{2}\right)^2=0\)nhưng lớp 8 mình chưa làm nên mình để pt vô nghiệm nhé
\(\dfrac{x-1}{-10}=\dfrac{-7}{y}=\dfrac{z+5}{3}=\dfrac{-2}{4}=\dfrac{-1}{2}\)
=>x-1=5 và 7/y=1/2 và z+5=-3/2
=>x=6 và y=14 và z=-13/2
\(-x-2=\dfrac{-5}{4}\\ \Leftrightarrow x=-2+\dfrac{5}{4}=-\dfrac{3}{4}\)
Theo đề ta có : x + 1 chia hết cho 2, 4, 5 và x là số nhỏ nhất hay x + 1 thuộc BCNN(2, 4, 5)
Ta có: 2 = 2 ; 4 = 22 ; 5 = 5
=> BCNN(2, 4, 5) = 22 . 5 = 20
=> x + 1 = 20 => x = 20 - 1= 19
Vậy x = 19
x chia 2 dư 1; x chia 4 dư 3; x chia 5 dư 4
\(\Rightarrow x+1\in BC\left(2,4,5\right)=B\left(20\right)=\left\{20;40;...\right\}\)
Mà \(x\) nhỏ nhất nên \(x-1\) nhỏ nhất
\(\Rightarrow x+1=20\Rightarrow x=19\)
Bài 2:
a: Để \(\dfrac{4}{x+2}>0\) thì x+2>0
hay x>-2
b: Để \(\dfrac{3x+2}{-4}>0\) thì 3x+2<0
hay x<-2/3
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow\left(x-1\right)^4-\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)^2\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(\left(x+\dfrac{1}{2}\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=2\\x+\dfrac{1}{2}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)