Cho tam giác ABC , D thuộc AB sao cho AD = 4 cm , DB = 2 cm . Kẻ DE vuông góc với AC ( E thuộc AC ) . Kẻ BF vuông góc với AC ( F thuộc AC ) và DE + BF = 7,5 cm . Tính BF , DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
\(\Delta ABF\) có DE song song với BF( cùng vuông góc với AC)
Áp dụng định lý Ta-lét, ta có:
\(\frac{AD}{AB}\)=\(\frac{DE}{BF}\)
\(\Leftrightarrow\frac{2}{3}=\frac{DE}{BF}\)
mặt khác DE+BF=7,5
\(\Rightarrow DE=3,BF=4,5\)
chúc bạn học tốt
a)Ta có : AB = AC
=> △ ABC cân tại A
Xét △ ABC cân tại A có :
AD là đường trung tuyến
=> AD là đường phân giác
Xét △ ADE vuông tại E và △ ADF vuông tại F có :
AD là cạnh chung
DAEˆ=DAFˆDAE^=DAF^ ( AD là đường phân giác )
Vậy △ ADE = △ ADF (ch-gn)
=> AE = AF ( hai cạnh tương ứng )
=> A nằm trên đường trung trực của EF (1)
Lại có : DE = DF ( △ ADE = △ ADF )
=> D nằm trên đường trung trực của EF (2)
Từ (1), (2) => AD là đường trung trực của EF
Mấy câu sau bạn tự làm nhé
a: Xet ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE
=>ΔABE cân tại A
b: Xet ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔBDF=ΔEDC
=>DF=DC
Xet ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC
Xét tam giác ABF có : DE // BF ( vì cùng vuông góc với AC )
\(\Rightarrow\frac{AD}{AB}=\frac{DE}{BF}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{2}{3}.BF\)
Ta có :
\(DE+BF=7,5\)
Hay \(\frac{2}{3}BF+BF=7,5\)
\(\Leftrightarrow BF\left(\frac{2}{3}+1\right)=7,5\)
\(\Leftrightarrow BF=4,5\left(cm\right)\)
\(\Rightarrow DF=7,5-4,5=3\left(cm\right)\)