K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=5 vào B, ta được:

\(B=\dfrac{5-1}{5-3}=\dfrac{4}{2}=2\)

b:  \(A=\dfrac{2x^2+6x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-1}{\left(x+3\right)\left(x-3\right)}\)

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)a)rút gọn A và tính A khi x=2b)Rút gọn B và tìm x để B=2/5c)tìm x thuộc Z  để (A,B)thuộc Z 2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2c)tìm x để A>03)B= x+2/x+3 - 5/x^2+x-6 - 1/2-xa)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị...
Đọc tiếp

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z  để (A,B)thuộc Z
 
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0

3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị nguyên

4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C    b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1         d) tìm giá trị nhỏ nhất của biểu thức C

5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D 
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
 

2
7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

15 tháng 8 2023

\(A=\left(2x+1\right)\left(x^2+1\right)+\dfrac{4}{2x+1}\) (chia đa thức)

Để A nguyên \(\Rightarrow4⋮2x+1\Rightarrow\left(2x+1\right)=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow x=\left\{-\dfrac{5}{2};-\dfrac{3}{2};-1;0;\dfrac{1}{2};\dfrac{3}{2}\right\}\)

x thỏa mãn đk đề bài là \(x=\left\{-1;0\right\}\)

3 tháng 7 2015

 

\(M=\frac{x^2-3x+5x-15+2}{x-3}=\frac{x\left(x-3\right)+5\left(x-3\right)+2}{x-3}=\frac{\left(x-3\right)\left(x+5\right)+2}{x-3}=x+5+\frac{2}{x-3}\)

=> M nguyên <=> x+5 nguyên và 2/x-3 nguyên <=> x nguyên và x-3 thuộc Ư(2)

=> x-3 thuộc (+-1; +-2) <=> x thuộc (4;2;5;1)

7 tháng 7 2018

\(A=\frac{2x-1}{x+2}\)

Để A \(\in\)\(ℤ\)thì \(2x-1\) \(⋮\)\(x+2\) ; \(x+2\) \(\ne\)0; \(2x-1,x+2\inℤ\)

Ta có: \(2x-1=2\left(x+2\right)-5\)

Vì \(2\left(x+2\right)⋮x+2\)

nên để \(2x-1⋮x+2\)

thì \(5⋮x-2\)

=> \(x-2\in\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:

\(x-2\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(3\)\(1\)\(7\)\(-3\)

Vì \(x\inℤ\)=>\(x\in\left\{1;\pm3;7\right\}\)

Còn 2 ý còn lại làm tương tự như ý này

19 tháng 12 2020

a)

ĐKXĐ: \(x\ne-4\)

Để A nguyên thì \(3x+21⋮x+4\)

\(\Leftrightarrow3x+12+9⋮x+4\)

mà \(3x+12⋮x+4\)

nên \(9⋮x+4\)

\(\Leftrightarrow x+4\inƯ\left(9\right)\)

\(\Leftrightarrow x+4\in\left\{1;-1;3;-3;9;-9\right\}\)

\(\Leftrightarrow x\in\left\{-3;-5;-1;-7;5;-13\right\}\)(nhận)

Vậy: Để A nguyên thì \(x\in\left\{-3;-5;-1;-7;5;-13\right\}\)

b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)

Để B nguyên thì \(2x^3-7x^2+7x+5⋮2x-1\)

\(\Leftrightarrow2x^3-x^2-6x^2+3x+4x-2+7⋮2x-1\)

\(\Leftrightarrow x^2\left(2x-1\right)-3x\left(2x-1\right)+2\left(2x-1\right)+7⋮2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-3x+2\right)+7⋮2x-1\)

mà \(\left(2x-1\right)\left(x^2-3x+2\right)⋮2x-1\)

nên \(7⋮2x-1\)

\(\Leftrightarrow2x-1\inƯ\left(7\right)\)

\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)

hay \(x\in\left\{1;0;4;-3\right\}\)(nhận)

Vậy: \(x\in\left\{1;0;4;-3\right\}\)

NM
12 tháng 8 2021

a.\(A=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=x-1+\frac{5}{3x+2}\)

là số nguyên khi 3x+2 là ước của 5 hay \(\orbr{\begin{cases}3x+2=\pm1\\3x+2=\pm5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

b.\(B=\frac{2x^3-9x^2+10x+4}{2x-1}=\frac{2x^3-x^2-8x^2+4x+6x-3+7}{2x-1}=x^2-4x+3+\frac{7}{2x-1}\)

là số nguyên khi 2x-1 là ước của 7 hay \(\orbr{\begin{cases}2x-1=\pm7\\2x-1=\pm1\end{cases}}\Leftrightarrow x\in\left\{-3,0,1,4\right\}\)