K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

PT vô tỉ xem lại đề:::)))

22 tháng 2 2020

Đề này là đề thi mình làm lại nên chắc chắn đúng mà

20 tháng 11 2017

Cộng 2 vế với 2 ta có :

5-x^2/2012 + 1 = (4-x^2/2013+1) - (x^2-3/2014-1)

<=> 2017-x^2/2012 = 2017-x^2/2013 - x^2-2017/2014 = 2017-x^2/2013+ 2017-x^2/2014

<=> 2017-x^2/2013 + 2017-x^2/2014 - 2017-x^2/2012 = 0

<=> (2017-x^2).(1/2013+1/2014-1/2012) = 0

<=> 2017-x^2 = 0 ( vì 1/2013+1/2014-1/2012 khác 0 )

<=> x = \(\sqrt{2017}\)

k mk nha

4 tháng 3 2019

\(\Leftrightarrow\frac{5-x^2}{2012}+1=\frac{4-x^2}{2013}+1+\frac{3-x^2}{2014}+1\)

\(\Leftrightarrow\frac{2017-x^2}{2012}-\frac{2017-x^2}{2013}-\frac{2017-x^2}{2014}=0\)

\(\Leftrightarrow\left(2017-x^2\right)\left(\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

\(\Leftrightarrow2017-x^2=0\)

\(\Leftrightarrow x^2=2017\)

\(\Leftrightarrow x=\sqrt{2017}\)

V...\(S=\left\{\sqrt{2017}\right\}\)

11 tháng 1 2017

Theo bài ra , ta có :

\(\frac{x+2}{2014}+\frac{x+1}{2015}=\frac{x+3}{2013}+\frac{x+4}{2012}\)

\(\Leftrightarrow\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)=\left(\frac{x+3}{2013}+1\right)+\left(\frac{x+4}{2012}+1\right)\)

\(\Leftrightarrow\left(\frac{x+2+2014}{2014}\right)+\left(\frac{x+1+2015}{2015}\right)=\left(\frac{x+3+2013}{2013}\right)+\left(\frac{x+4+2012}{2012}\right)\)

\(\Leftrightarrow\frac{x+2016}{2014}+\frac{x+2016}{2015}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)

\(\Leftrightarrow\frac{x+2016}{2014}+\frac{x+2016}{2015}-\frac{x+2016}{2013}-\frac{x+2016}{2012}=0\)

\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)

Vì \(\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)>0\)

\(\Leftrightarrow x+2016=0\)

\(\Leftrightarrow x=-2016\)

Vậy \(x=-2016\)

Tập nghiệm của phương trình là \(S=\left\{-2016\right\}\)

Chúc bạn học tốt =)) 

11 tháng 1 2017

\(\frac{x+2}{2014}+\frac{x+1}{2015}=\frac{x+3}{2013}+\frac{x+4}{2012}\)

\(\frac{x+2}{2014}+1+\frac{x+1}{2015}+1=\frac{x+3}{2013}+1+\frac{x+4}{2012}+1\)

\(\frac{x+2+2014}{2014}+\frac{x+1+2015}{2015}=\frac{x+3+2013}{2013}+\frac{x+4+2012}{2012}\)

\(\frac{x+2016}{2014}+\frac{x+2016}{2015}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)

\(\frac{x+2016}{2014}+\frac{x+2016}{2015}-\frac{x+2016}{2013}-\frac{x+2016}{2012}=0\)

\(\left(x+2016\right).\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)

MÀ \(\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2012}\right)\ne0\)

\(\Rightarrow x+2016=0\)

\(\Rightarrow x=-2016\)

17 tháng 5 2016

cong 1 vao moi bieu thuc thi ta duoc x-2016/2013+x-2016/2014=x-2016/4+x-2016/5

(x-2016)(1/2013+1/2014-1/4-1/5)=0

vi1/2013+1/2014-1/4-1/5)>=0                 suy ra x-2016=0 suy ra x=2016

vay.................................

11 tháng 2 2020

a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

\(\Rightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)

\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)

\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)

\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

Mà \(\left(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\right)\)nên \(\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)< 0\)

\(\Rightarrow x+10=0\Rightarrow x=-10\)

Vậy x = -10

b) \(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)

\(\Rightarrow\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1\)

\(+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)

\(\Rightarrow\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}\)\(+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)

\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)

Mà \(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)nên x - 2012 = 0

Vậy x = 2012

11 tháng 2 2020

a, (x+1)/9 +1 + (x+2)/8  =  (x+3)/7 + 1 + (x+4)/6 + 1

<=> (x+10)/9 +(x+10)/8 = (x+10)/7 + (x+10)/6

<=> (x+10). (1/9 +1/8 - 1/7 -1/6) =0

vì 1/9 +1/8 -1/7 - 1/6 khác 0

=> x+10=0

=> x=-10

9 tháng 1 2016

cho mk hỏi cách giải bài đó đi đáp án mk pk rồi

 

22 tháng 4 2020

Bài 1 : 

Ta có  : 

\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)

\(\Rightarrow\left(\frac{x+2011}{2013}+1\right)+\left(\frac{x+2012}{2012}+1\right)=\left(\frac{x+2010}{2014}+1\right)\)

\(+\left(\frac{x+2013}{2011}+1\right)\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}=\frac{x+4024}{2014}+\frac{x+4024}{2011}\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)

\(\Rightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)

\(\Rightarrow x+4024=0\)

\(\Rightarrow x=-4024\)

22 tháng 4 2020

Bài 2 : 

Đặt \(x^2+2x+1=a\Rightarrow a=\left(x+1\right)^2\ge0\)

=> Phương trình trở thành 

\(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)

\(\Rightarrow\frac{a}{a+1}.6\left(a+1\right)\left(a+2\right)+\frac{a+1}{a+2}.6\left(a+1\right)\left(a+2\right)=\frac{7}{6}.6\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow6a\left(a+2\right)+6\left(a+1\right)^2=7\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow12a^2+24a+6=7a^2+21a+14\)

\(\Rightarrow5a^2+3a-8=0\)

\(\Rightarrow\left(a-1\right)\left(5a+8\right)=0\)

Vì \(a\ge0\Rightarrow a=1\)

\(\Rightarrow x^2+2x+1=1\)

\(x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2,0\right\}\)

5 tháng 2 2019

bn bị rảnh ak ?

ko trả lời thì đừng có viết linh tinh

5 tháng 2 2019

\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}+\frac{x+2045}{10}=0\)

\(\Leftrightarrow\frac{x+1}{2014}+1+\frac{x+2}{2013}+1+\frac{x+3}{2012}+1+\frac{x+2045}{10}-3=0\)

\(\Leftrightarrow\frac{x+1+2014}{2014}+\frac{x+2+2013}{2013}+\frac{x+3+2012}{2012}+\frac{x+2045-3.10}{10}=0\)

\(\Leftrightarrow\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}+\frac{x+2015}{10}=0\)

\(\Leftrightarrow\left(x+2015\right).\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{10}\right)=0\)

Vì \(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{10}\ne0\)

Nên x + 2015 = 0 <=> x = -2015

Vậy x = -2015