K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 2 2020

\(A=9xy+\left(10y+11x\right)\left(1-x-y\right)\)

\(=-11x^2-10y^2-12xy+11x+10y\)

\(=-11\left(x+\frac{6}{11}y-\frac{1}{2}\right)^2-\frac{74}{11}\left(y-\frac{11}{37}\right)^2+\frac{495}{148}\le\frac{495}{148}\)

\(A_{max}=\frac{495}{148}\) khi \(\left\{{}\begin{matrix}x=\frac{25}{74}\\y=\frac{11}{37}\\z=\frac{27}{74}\end{matrix}\right.\)

25 tháng 9 2023

Áp dụng BĐT Cô-si cho 3 số dương \(x^2,y^2,z^2\) , ta có:\(x^2+y^2+z^2\ge3\sqrt[3]{\left(xyz\right)^2}\)

\(\Leftrightarrow\left(xyz\right)^2\le\dfrac{\left(x^2+y^2+z^2\right)^3}{27}\) \(=\dfrac{1}{27}\)

\(\Leftrightarrow-\dfrac{1}{3\sqrt{3}}\le xyz\le\dfrac{1}{3\sqrt{3}}\)

 Vậy \(max_{xyz}=\dfrac{1}{3\sqrt{3}}\). Dấu "=" xảy ra khi \(x^2=y^2=z^2\) 

\(\Rightarrow\left(x,y,z\right)=\left(\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}}\right)\) hoặc \(\left(\dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{3}}\right)\) và các hoán vị.

 

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Sử dụng bổ đề: Với \(a,b>0\Rightarrow a^3+b^3\geq ab(a+b)\)

BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) (luôn đúng)

Áp dụng vào bài toán:

\(P\leq \frac{1}{x^3yz(y+z)+1}+\frac{1}{y^3xz(x+z)+1}+\frac{1}{z^3xy(x+y)+1}\)

\(\Leftrightarrow P\leq \frac{1}{x^2(y+z)+xyz}+\frac{1}{y^2(x+z)+xyz}+\frac{1}{z^2(x+y)+xyz}\)

\(\Leftrightarrow P\leq \frac{1}{x(xy+yz+xz)}+\frac{1}{y(xy+yz+xz)}+\frac{1}{z(xy+yz+xz)}=\frac{xy+yz+xz}{xy+yz+xz}=1\)

Vậy \(P_{\max}=1\Leftrightarrow x=y=z=1\)

20 tháng 5 2021

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\) 

\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)

Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)

\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)

minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\)  \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)

maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)

 

13 tháng 10 2021

sai chiều bđt r

 

11 tháng 3 2020

hehe :)))) tam thức bậc 2 anh êi

11 tháng 3 2020

P=9xy+10yz+11zx=9xy+z(10y+11x)=9xy(1-x-y)(10y+11x)

khai triển và rút gọn ta được :

\(P=-11x^2-10y^2+11x+10y-12xy\)

tương đương với :

 \(11x^2+\left(12y-11\right)x+10y^2-10y+P\ge0\)(1)

Coi đây là tam thức bậc 2 ẩn x do đk của x => (1) phải có nghiệm  hay

\(\Delta-\left(12y-11\right)^2-44\left(10y^2-10y+P\right)\ge0\)

Hay \(-296y^2+176y+121-44P\ge0\)

tương đương với

\(P\le-\frac{74}{11}\left(y^2-\frac{22}{37}y-\frac{121}{296}\right)\)

dùng phép tách thành bình phương ; ta dễ thấy :

\(y^2-\frac{22}{37}y-\frac{121}{296}\ge-\frac{5445}{10952}\)

=> \(P\le\left(\frac{74}{-11}\right).\left(-\frac{5445}{10952}\right)-\frac{495}{148}\)

vậy \(MaxP=\frac{495}{148}\)đạt được khi \(y=\frac{11}{37};x=\frac{25}{74};z=\frac{27}{74}\)

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

NV
21 tháng 1 2021

\(2=x^2+y^2+z^2\ge y^2+z^2\ge2yz\Rightarrow yz\le1\)

\(P=x\left(1-yz\right)+y+z\Rightarrow P^2\le\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]\)

\(P^2\le\left(2+2yz\right)\left(y^2z^2-2yz+2\right)\)

\(P^2\le2\left(yz\right)^3-2\left(yz\right)^2+4=2y^2z^2\left(yz-1\right)+4\le4\)

\(\Rightarrow P\le2\)

\(P_{max}=2\) khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và các hoán vị