trong hình vuông ABCD lấy E cho tam giác DEC cân tại E, góc EDC=góc ECD = 15 độ. sao nối E với A,B
cm rằng tam giác AEB là tam giác đều
giúp mk vs mn người ơi !!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy điểm I trong hình vuông ABCD sao cho tam giác IBC cân và có góc đáy bằng 15°. Ta tính được góc BIC = 150°
Ta có: ΔIBC = ΔEAB ⇒ IB = EB
Lại có: góc EBI = 90° - 15° - 15° = 60°
⇒ ΔEBI đều
⇒ IE = IB = IC
⇒ ΔIEC cân tại I
⇒ góc EIC = 360° - góc BIC - góc EIB = 360° - 150° - 60° = 150°
Tam giác cân IEC có góc ở đỉnh bằng 150° nên góc ICE = 15°
góc ECD = 90° - góc ICB - góc ICE = 90° - 15° - 15° = 60°
Tương tự cho góc kia: góc EDC = 60°
Vậy tam giác DEC đều.
Có làm thì mới có bài, không làm muốn có bài thì chỉ ăn cơm ăn đầu lợn
Ta có : ADCˆ=ADEˆ+EDCˆADC^=ADE^+EDC^
=> 90O=ADEˆ+15O90O=ADE^+15O
=> ADEˆ=75OADE^=75O
Tương tự ta cũng có : BCEˆ=75oBCE^=75o
Xét ΔADEΔADE và ΔBCEΔBCE có :
AD = BC (do ABCD à hình vuông)
ADEˆ=BCEˆ(=75o)ADE^=BCE^(=75o)
DE=ECDE=EC (do tam giác ECD cân tại E- gt)
=> ΔADEΔADE = ΔBCEΔBCE (c.g.c)
=> AE = BE (2 cạnh tương ứng)
Mà : AD = AE
=> ΔADEΔADE cân tại A
Xét ΔADEΔADE ta có :
ADEˆ=AEDˆ=75oADE^=AED^=75o (tính chất tam giác cân)
=> DAEˆ=180O−(ADEˆ+AEDˆ)DAE^=180O−(ADE^+AED^)
=> DAEˆ=180O−2.75O=30ODAE^=180O−2.75O=30O
Chứng minh tương tự ta có : CBEˆ=30oCBE^=30o
Có : ABEˆ=ABCˆ−CBEˆ=90O−30O=60OABE^=ABC^−CBE^=90O−30O=60O
BAEˆ=BADˆ−EADˆ=90O−30O=60OBAE^=BAD^−EAD^=90O−30O=60O
Xét ΔABEΔABE có :
ABEˆ+BAEˆ+AEBˆ=180OABE^+BAE^+AEB^=180O
=> AEBˆ=180O−2.60O=60OAEB^=180O−2.60O=60O
Thấy : ABEˆ=BAEˆ=AEBˆ=60oABE^=BAE^=AEB^=60o
=> ΔABEΔABE là tam giác đều (đpcm)
Ta có : ADCˆ=ADEˆ+EDCˆADC^=ADE^+EDC^
=> 90O=ADEˆ+15O90O=ADE^+15O
=> ADEˆ=75OADE^=75O
Tương tự ta cũng có : BCEˆ=75oBCE^=75o
Xét ΔADEΔADE và ΔBCEΔBCE có :
AD = BC (do ABCD à hình vuông)
ADEˆ=BCEˆ(=75o)ADE^=BCE^(=75o)
DE=ECDE=EC (do tam giác ECD cân tại E- gt)
=> ΔADEΔADE = ΔBCEΔBCE (c.g.c)
=> AE = BE (2 cạnh tương ứng)
Mà : AD = AE
=> ΔADEΔADE cân tại A
Xét ΔADEΔADE ta có :
ADEˆ=AEDˆ=75oADE^=AED^=75o (tính chất tam giác cân)
=> DAEˆ=180O−(ADEˆ+AEDˆ)DAE^=180O−(ADE^+AED^)
=> DAEˆ=180O−2.75O=30ODAE^=180O−2.75O=30O
Chứng minh tương tự ta có : CBEˆ=30oCBE^=30o
Có : ABEˆ=ABCˆ−CBEˆ=90O−30O=60OABE^=ABC^−CBE^=90O−30O=60O
BAEˆ=BADˆ−EADˆ=90O−30O=60OBAE^=BAD^−EAD^=90O−30O=60O
Xét ΔABEΔABE có :
ABEˆ+BAEˆ+AEBˆ=180OABE^+BAE^+AEB^=180O
=> AEBˆ=180O−2.60O=60OAEB^=180O−2.60O=60O
Thấy : ABEˆ=BAEˆ=AEBˆ=60oABE^=BAE^=AEB^=60o
=> ΔABEΔABE là tam giác đều (đpcm)
CHÚC MAY MẮN
hình tự vẽ
Vì EDC cân nên:
EDC=ECD=15
Ta có: ADE+EDC=90
=> ADE =90-15=75
Tương tự, ta có: BCE+ECD=90
=> BCE =90-15=75
Xét 2 tam giác AED và BEC có:
-góc AED=góc BEC ( đối đỉnh)
-ED=EC( tam giác EDC cân)
-góc ADE=goscBCE(cmt)
suy ra hai tam giác AED và BEC bằng nhau
==>AE=BE(2 cạnh tương ứng)
xét tam giác AEB có AE=AB=> tam giác AEB cân(đpcm)