Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ∆ EDC và ∆ FDA, tacó: ∠ (EDC) = ∠ (FDA) = 15 0
DC = AD (gt)
∠ (ECD) = ∠ (FAD) = 15 0
Suy ra: ∆ EDC = ∆ FDA (g.c.g)
⇒ DE = DF
⇒ ∆ DEF cân tại D
Lại có: ∠ (ADC) = ∠ (FDA) + ∠ (FDE) + ∠ (EDC)
⇒ ∠ (FDE) = ∠ (ADC) -( ∠ (FDA) + ∠ (EDC) )= 90 0 - ( 15 0 + 15 0 ) = 60 0
Vậy ∆ DEF đều.
Xét ∆ ADE và ∆ BCE , ta có:
ED = EC (vì AEDC cân tại E)
∠ (ADE) = ∠ (BCE) = 75 0
AD = BC (gt)
Suy ra: ∆ ADE = ∆ BCE (c.g.c)
⇒ AE = BE (1)
* Trong ∆ ADE, ta có:
∠ (AFD) = 180 0 – ( ∠ (FAD) + ∠ (FDA) ) = 180 0 – ( 15 0 + 15 0 ) = 150 0
∠ (AFD) + ∠ (DFE) + ∠ (AFE) = 360 0
⇒ ∠ (AFE) = 360 0 - ( ∠ (AFD) + ∠ (DFE) ) = 360 0 – ( 150 0 + 60 0 ) = 150 0
* Xét ∆ AFD và ∆ AFE, ta có: AF cạnh chung
∠ (AFD) = ∠ (AFE) = 150 0
DE = EF (vì ∆ DFE đều)
Suy ra: ∆ AFD = ∆ AFE (c.g.c) ⇒ AE = AD
Mà AD = AB (gt)
Suy ra: AE = AB (2)
Từ (1) và (2) suy ra: AE = AB = BE
Vậy ∆ AEB đều.
a: Xét ΔEDC và ΔFAD có
góc EDC=góc FAD
DC=AD
góc ECD=góc FDA
Do đó: ΔEDC=ΔFAD
=>DE=DF(1)
góc ADC=góc FDA+góc FDE+góc EDC
=90-(15+15)=60 độ(2)
Từ (1) và (2) suy ra ΔDEF đều
b: góc ECB=90-15=75 độ
góc EDA=15+60=75 độ
Xét ΔADE và ΔBCE có
ED=EC
góc ADE=góc BCE
AD=BC
Do đó: ΔADE=ΔBCE
=>AE=BE(3)
góc AFD=180-15-15=150 độ
góc AFE=360-150-60=150 độ
Xét ΔAFD và ΔAEF có
AF chung
góc AFD=góc AFE
DF=EF
Do đó: ΔAFD=ΔAEF
=>AE=AD=AB(4)
Từ (3) và (4) suy ra ΔABE đều
Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).
Vậy B, E, F thẳng hàng.
Trúc Giang Bạn cần giải thích đoạn nào vậy?
Tam giác BCF cân tại C nên \(\widehat{FBC}=\widehat{BFC}\).
Do đó \(\widehat{FBC}+\widehat{BFC}+\widehat{FCB}=180^o\Leftrightarrow\widehat{FCB}+2\widehat{FBC}=180^o\Leftrightarrow\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}\).
Do đó \(\widehat{FBC}=\widehat{EBC}\) mà E, F cùng thuộc 1 nửa mf bờ BC nên E, B, F thẳng hàng.