Cho tam giác DEF vuông tại D. Gọi DM là trung tuyến của tam giác. Kẻ MN ⊥ DE (N ∈ DE), MP ⊥ DF (P ∈ DF).
a/ Tứ giác DPMN là hình gì ? Vì sao?
b/ Tứ giác DPME là hình gì ? Vì sao?
VẼ HÌNH VÀ CHỨNG MINH CHI TIẾT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này tương tự bài 1
a) EF = 15
=> DM = EM = FM = 7,5
b) MND + D = 180
MND + 90 = 180
=> MND = 90
D + MED = 180
90 + MED = 180
=> MED = 90
=> DNME là hình chữ nhật
c) y hệt như bài trước mik giải
b: Ta có: A và H đối xứng nhau qua DF
nên DF là đường trung trực của AH
=>B là trung điểm của AH và DF⊥AH tại B
Xét tứ giác DBAC có
\(\widehat{ABD}=\widehat{ACD}=\widehat{BDC}=90^0\)
Do đó: DBAC là hình chữ nhật
c: Xét ΔDEF có
A là trung điểm của EF
AB//DE
Do đó: B là trung điểm của DF
Xét tứ giac DAFH có
B là trung điểm của DF
B là trung điểm của AH
Do đó: DAFH là hình bình hành
mà AD=AF
nên DAFH là hình thoi
a: ΔDEF vuông tại D
=>\(DE^2+DF^2+EF^2\)
=>\(EF^2=9^2+12^2=225\)
=>\(EF=\sqrt{225}=15\left(cm\right)\)
Ta có; ΔDEF vuông tại D
mà DM là đường trung tuyến
nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)
b: Xét tứ giác DNMK có
\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)
=>DNMK là hình chữ nhật
c: Xét ΔDEF có MN//DF
nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)
=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)
mà \(MN=\dfrac{1}{2}MH\)
nên MH=DF
Ta có: MN//DF
N\(\in\)MH
Do đó: MH//DF
Xét tứ giác DHMF có
MH//DF
MH=DF
Do đó: DHMF là hình bình hành
=>DM cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của DM
nên O là trung điểm của HF
=>H,O,F thẳng hàng
a: Xét ΔDEF có
N là trung điểm của EF
P là trung điểm của DF
Do đó: NP là đường trung bình
=>NP//DE
DN=EF/2=10(cm)
a ) Xét ◇DENF có :
Góc N = Góc F = Ê = 90°
\(\Rightarrow\)◇DENF là hình chữ nhật
b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến
\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )
Xét \(\Delta\)NDF và \(\Delta\)PDF có :
\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )
\(\Rightarrow\)F là trung điểm NP
a) Xét tứ giác NEDF có +) \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)
+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)
+) \(\widehat{DEN}=90^0\)(DE vuông góc MN)
\(\Rightarrow\)tứ giác NEDF là hình chữ nhật
b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:
DF : cạnh chung
DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)
Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)
\(\Rightarrow NF=PF\)
Suy ra F là trung điểm của NP (đpcm)