K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

Ta có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)mà xy+yz+zx=0

\(\Rightarrow x^2+y^2+z^2=0\left(1\right)\)

Lại có: \(x^2,y^2,z^2\ge0\Rightarrow x^2+y^2+z^2\ge0\)Kết hợp (1)

\(\Leftrightarrow x^2=y^2=z^2=0\Leftrightarrow x=y=z=0\)

Vậy \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=-1+0+1=0\)

15 tháng 2 2020

Ta có : \(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=0\) ( Do \(xy+yz+zx=0\) )

\(\Rightarrow x^2+y^2+z^2=xy+yz+zx\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow x=y=z\)

Khi đó : \(x+y+z=3x=0\)

\(\Rightarrow x=0\Rightarrow x=y=z=0\)

Nên \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=0\)

Vậy : \(T=0\).

22 tháng 10 2017

Do \(x+y+z=0;xy+yz+xz=0\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2=0\)\(\Rightarrow x=y=z=0\)

\(\Rightarrow S=\left(x-1\right)^{2011}+\left(y-1\right)^{2012}+\left(z+1\right)^{2013}=\left(-1\right)^{2011}+\left(-1\right)^{2012}+1^{2013}=1\)

19 tháng 11 2017

Từ giả thiết , ta có :

( x + y + z)( xy + yz + xz ) = xyz

x( xy + yz + xz) + y( xy + yz + xz ) + z( xy + yz + xz ) - xyz = 0

x2y + xyz + x2z + xy2 + y2z + xyz + xyz + yz2 + xz2 - xyz = 0

x2y + x2z + xy2 + y2z + yz2 + xz2 + 2xyz = 0

xy( x + y) + xz( x + z) + yz( y + z) + 2xyz = 0

xy( x + y + z) + xz( x + y + z) + yz( y + z) = 0

( x + y + z)x( y + z) + yz( y + z) = 0

( y + z)( x2 + xy + xz + yz ) = 0

( y + z)[ x( x + y ) + z( x + y) ] = 0

( y + z)( y + x )( x + z) = 0

Suy ra :

* x + y = 0 --> x = - y . Thay vào đẳng thức cần chứng minh , ta có

( - y)2013 + y2013 + z2013 = ( - y + y + z)2013

Khi đó , ta có : z2013 = z2013 , luôn đúng

* Tương tự , thử với các trường hợp khác : y = - z ; x = - z

Vậy , đảng thức được chứng mình

19 tháng 11 2017

Ta có (x+y+z)(xy+yz+xz)=xyz

<=>\((x+y+z)(\frac{xyz}{z}+\frac{xyz}{y}+\frac{xyz}{x})=xyz \)

<=>(x+y+z)(\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=1 \)

<=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z} \)

<=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0 \)

<=>\(\frac{x+y}{xy}+\frac{x+y}{z(x+y+z)} \)

<=>\((x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)}) \)

<=>\((x+y)(\frac{xz+yz+z^2+xy}{xyz(x+y+z)} \)

<=>\((x+y)(y+z)(x+z)(\frac{1}{xyz(x+y+z)} )\)

=>x=-y

hoặc y=-z

hoặc x=-z

Thay vào Pt => đpcm

26 tháng 10 2017

 ta có (x+y+z).(xy+yz+zx) - xyz = 0

<=> (x+y).(y+z).(z+x) = 0 
=> vế trái phải có 1 nhân tử bằng 0 ,chẳng hạn x + y = 0 => x = -y 
=> x^2013 = -y^2013 
=> x^2013 + y^2013 + z^2013 = - y^2013 + y^2013 + z^2013 + = z^2013 = ( x +y + z )^2013 

21 tháng 11 2017

Bạn kia làm đúng rồi

8 tháng 12 2023

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

NV
4 tháng 10 2019

\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\) \(\Rightarrow x=y=z\)

\(A=\left(2015-2014\right)\left(2014-2013\right)\left(2013-2012\right)=1\)

16 tháng 9 2018

Bạn quy đồng rồi phân tích tử thành nhân tử rồi ra à.

29 tháng 6 2017

Phân tích nhân tử là được

\(\left(x+y+z\right)\left(xy+yz+xz\right)-xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=-y\\y=-z\\z=-x\end{cases}}\)

Với \(x=-y\) thì

\(\hept{\begin{cases}x^{2013}+y^{2013}+z^{2013}=z^{2013}\\\left(x+y+z\right)^{2013}=z^{2013}\end{cases}}\)

\(\Rightarrow x^{2013}+y^{2013}+z^{2013}=\left(x+y+z\right)^{2013}\)

Tương tự cho các trường hợp còn lại.

1 tháng 7 2017

bt làm rồi hỏi vui thôi ^^