\(x^2+y^2+z^2=xy+yz+zx\)

Tính giá trị biểu thức A=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 10 2019

\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\) \(\Rightarrow x=y=z\)

\(A=\left(2015-2014\right)\left(2014-2013\right)\left(2013-2012\right)=1\)

NV
27 tháng 6 2020

\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)

\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)

\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)

NV
12 tháng 2 2020

\(P=\frac{1}{2}\left(x^2+y^2+z^2\right)+\frac{x^2+y^2+z^2}{xyz}\)

\(P\ge\frac{3}{2}\sqrt[3]{\left(xyz\right)^2}+\frac{3\sqrt[3]{\left(xyz\right)^2}}{xyz}=\frac{3}{2}\sqrt[3]{\left(xyz\right)^2}+\frac{3}{\sqrt[3]{xyz}}\)

\(P\ge\frac{3}{2}\left(\sqrt[3]{\left(xyz\right)^2}+\frac{1}{\sqrt[3]{xyz}}+\frac{1}{\sqrt[3]{xyz}}\right)\ge\frac{9}{2}\) (AM-GM trực tiếp biểu thức trong ngoặc)

Dấu "=" xảy ra khi \(x=y=z=1\)

21 tháng 1 2017

Áp dụng BĐT Cô - si cho 3 bộ số không âm

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)

\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)

\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)

\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)

\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)

Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)

15 tháng 4 2016

Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)

Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)

Và \(z+xy=\left(x+1\right)\left(y+1\right)\)

Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

            \(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)

                                                       \(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)

Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)